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I. General

The four year duration of this grant has resulted in twenty-five technical publica-
tions in the general areas of signal estimation and source coding. A copy of each publi-
cation is found in the Appendix. In addition to these publications, one patent applica-
tion has been filed dealing with a novel method of multi-dimensional quantization.

In addition to the numerous publications noted above, this project has resulted in
the graduation of four Ph.D. students who have been supported in whole or in part
through this grant. Two of these dissertations, one by Jim Bucklew and one by Kerry
Rines, deal with the analysis and design of block quantizers. The remaining two disser-
tations by Gonzalo Arce and Tom Nodes treat properties of median filters. A fifth
dissertation by Tom McCannon is still being researched. This research concerns the
design of nonlinear estimators and predictions. Here we will present a brief description
of the technical results; however, the detailed discussion is contained in the attached
reprints.

The work on multidimensional quantizers began with a search to find better ways
of quantizing multidimensional vectors. We started with a study of vectors with Gaus-
sian distributions and then generalized to circularly symmetric distributions. We
developed new derivations for bounds on quantizer performance. Finally, we developed
a very simple procedure by which to implement the known optimum quantizer struc-
tures. This procedure has been the subject of a patent application.

Our work in nonlinear estimation began with a study of estimation schemes which
used an extended form of the projection theorem in their design. We combined polyno-
mial operations with linear operations in the estimator design.

Our work led to an investigation of the properties of the median filters. Our ini-
tial interest in the median filter began because of the fact that these median methods
really seem to work in many situations where linear estimators are ne: ‘ly useless. The
’ problem with median filters (and therefore our opportunity) has been the atmost com-
{ plete lack of theory on their properties and for their design. We have viewed this as a
chance to make a significant contribution in this relatively new field of median
methods. We believe we have made several major contributions to the analysis of
median filters as illustrated by two Ph.D. dissertations and a number of invited techni-
cal presentations on the topic of median filters. Copies of these dissertations will be
1 mailed as separate technical reports.
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A NOVEL APPROACH FOR DESIGNING NONLINEAR DISCRETE TIME FILTERS: PART I

D, MINOO-HAMEDANI and G.L. WISE
Department of Electrical Engineering
University of Texas at Austin
Austin, Texas 78712

and

N.C. GALLAGHER and T.E. McCANNON
School of Electrical Engineering
Purdue University

West Lafayette, Indiana 49707

ABSTRACT

The problem of minimum mean squared error prediction of a discrete time
random process using a nonlinear filter consisting of a zero memory non-
linearity followed by a linear filter is studied. Classes of random proces-
ses for which the best predictor is realizable using a nonlinear filter of
the above form are discussed. For those random processes for which the
best predictor is not realizable using the above nonlinear filter, an iter-
ative procedure is presented for finding a suboptimal nonlinear filter.

I. INTRODUCTION

In this paper we consider a second order random process (Xn, n=1,2,...},
and we are interested in predicting the random variable XN+1 from an obser-
vation of xl,...,xN. Our estimate is denoted by Xn+1, and we wish to choose

it so as to minimize the mean squared error.
It is well known [1, pp.77-78] that the optimal estimate of Xygyp 10

terms of xl,...,xN is given by the conditional expectation

~

Xgpp = E {xN+1 | xN.....xl}

In general, this is a Borel measurable function of xl""'XN' and in many

cases an exact expression for this quantity is difficult to obtain. Often
we do not have the necessary statistical Information to evaluate such a
quantity. Linear estimation has been widely studied [2], and it is well
known that the best linear estimate of XN+1 given the observations Xl,....

XN is obtained by applying the Projection Theorem [1, pp.150-155]. 1t is

clear that in this case the only statistical information required is the
second moment characteristics of the random process.

In this paper we restrict our estimate xN+1 to be of a form that is

expressible as the output of a system consisting of a zero memory nonline-
arity (ZNL) followed by a linear filter. The ZNL is characterized by a
Borel measurable function g(-) such that g(Xl),....g(xn+1) are gsecond order

random variables. If the weighting sequence of the linear filter 1is given
by hO""’hN-l’ then the estimate is given by

A N
Xeo1 = n; g(X by ¢}

Presented at the Sixteenth Annual Allerton Conference on Comimtim,
Control, and Computing, October 4-6, 1978; to be published in the
Proceedings of the Conference.




We wish to determine a function g(:) and a set of coefficients hO""’hN-l

in such a way that the resulting mean squared error is minimized. With this
form of an estimate, we are¢ guaranteed that the performance can be at least
as good as that of the optimal linear filter.

In Section II we consider some cases where the optimal estimate has
the form of Eq.(l). In the general case the optimal predictor will not
have the form of Eq.(1l) and thus a predictor of this form will be suboptimal.
This situation is discussed in Section III where an iterative scheme is
presented for determining suboptimal predictors. In Section IV examples
are given to illustrate the method.

I1. OPTIMAL PREDICTION

In this section we consider some cases where the optimal filter has
the form of Eq.(1). Whenever the optimal filter is linear, then it obviously
has the form of Eq.(l) with g(x)=x. The class of spherically invariant
random processes [3] admits linear solutions, with the most well-known
examples being the Gaussian processes.

It is clear that the performance of the filter given by Eq.(1l) can
always be made at least as good as that of the optimal linear filter. 1In
some cases the filter given by Eq.(l) can be optimal while the optimal
linear filter is useless. For example, let xn=Pn(U) where U is a random

variable uniformly distributed over [-1,1] and Pn(-) is the n-th Legendre
polynomial. In this case, the sequence {Xn, n=1,2,...} is a sequence of

uncorrclated zero mean random variables and the optimal linear filter yields

an estimate which is zero. However, for g(x)=PN+1(x) and
o= 1, n=0
n 0, n#¥0 ,

the filter of Eq.(l) gives the estimate iN+l=xN+l' Numerous examples

similar to this can easily be constructed.
When the process is a (first order) Markov process it is well known
[1, pp.81-83] that E{xN+l|xN,...,xl} = E{XN+1|XN}, with probability one

(wpl). Thus a system of the form of Eq.(l) with a ZNL given by g(x)=
E{XN+1|XN = x} and a weighting sequence given by

1, n=0
O, n# O

will yield the optimal estimate of XN+1'

Markov processes serve as the model of many physical phenomena that
arise in practice. Often they are obtained as the solution of first order
stochastic difference equations of the form

X = g(Xn) + Zn+

n+] n=0,1’2'...

1 1]
where g(-) is a Borel measurable function and the sequence {Zn} is a

sequence of zero mean independent random variables independent of the
initial condition XO' It is easily seen that in this case we will have

E{XN+IIXN,...,XI}=g(XN) wpl.

It is clear that for any random process for which
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E(Xgy [ Xgeeo0Xy) = nfa:l g(X Dhy - wpl, (2)

a system of the form of Eq.(1) will produce the optimal estimate of Xeel

As another example of a process for which the conditional expectation has
the form of Eq.(2) consider the pracess generated by the following second
order stochastic difference equation:

Xn+2 = hog(Xn+]) + hlg(xn) + Zn+2 » n==1,0,1,2,..., (3)

where g(-) is a Borel measurable function and {Zn} is a sequence of zero

mean independent random variables independent of the initial conditions

X_1 and XO. It can be easily seen that for this example, for any N>2,

E{Xyp ! Xgo o0 Xyt = hpe (X)) + hpe(X ) wpl.

Extension of this example to the case where Eq.(3) is a k-th order stochas-
tic difference equation is obvious.

To obtain a characterization of a random process for which a form of
Eq.(2) holds, we use a thecorem due to Balakrishnan [4].

Theorem (Balakrishnun): Let CN+1(tl,...,tN+l

istic function of the random variables Xl""‘xN+l°

of all orders of the random variables exist, so that C

) denote the joint character-

Assume that the moments

N+1(...) has deriva-
tives of all orders. Let D, denote the differential operator 3(-)/3it

»
so that k

3
Dy (Lyrmmeatyy)) = AL, O (Epreeertygg) -

Let P(Xl,---,XN) be a polynomial in N variables. Then a necessary and
sufficient condition for
(X, M|

ne1) XXyl = POl X) wpl

is that
M
a

a(ie

(tl,.. = P(Dl""’D ) - C

N (tl,...,tN 0).

st e oo N+1 ,

C
+
M N+l N+1

N+l)

Now, in the above theorem let M=1 and let g(-) be a polynomial of
degree d, i.e.

&
g(x) = ;Z% a;x (4)

and assume P(xl,....xN) has the form

-
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Assume that the random variables in the process possess moments of all
orders. Then a necessary and sufficient condition for Eq.(2) to hold,
where g(-) is given by Eq.(4), is that

N d
J - J
) S N I N =3 3 By 23 Pp 1 (oo e e s 0) -

slityy,y N+1=0 A=l j=0

This result is of limited practical usefulness, because one often does not
have the necessary statistical information available.

II1. SUBOPTIMAL PREDICTION

In the general case there will not exist a function g(-) and a
weighting sequence hO""'hV-J such that Eq.(2) is satisfied. However, it

is quite reasonable to conjecture that in many cases it may be possible to
determine a filter having the form of Eq.(l) with a mean squared error
either significantly smaller than that associated with the optimal linear
filter or very close to the mean squared error associated with the optimal
filter.

Once we assume that the function g(-) that minimizes the mean squared
error is known, the g(Xn)'s will be well defined random variables and the

determination of the hn's that minimize the mean squared error reduces to

an application of the Projection Theorem, i.e. setting
N
E 1] Xve1 ™ n§ hy_ a8 | BT = 04 3=1, 00N,

and solving for the hn s. To carry out this step we need to calculate the

terms E(g(xn)g(xj)} and E{XN+1g(Xj)}. The difficult problem is the deter-

mination of the function g(-) that minimizes the mean squared error.

Notice that, in the optimization problem where the filter is constrained
to be of the form in Eq.(1), only second order information (i.e. the family
of bivariate distributions) is required. This is more statistical infor-
mation than is required if we were doing optimal linear filtering, which
requires second moment information. However, it is still considerably
less statistical information than is required if we were doing optimal
filtering, which requires statistical information pertaining to an (N+1)-st
dimensional distribution.

In order to circumvent the difficult problem of determining the
function g(-) to use in Eq.(l), we will parameterize g(-) and thus let the
determination of g(-) simply depend upon finding the correct parameters.
Doing so, we would then write the resulting mean squared error as a function
of the parameters associated with g(-) and the weighting sequence of the
linear filter. 1In this casce, the mean squared error would be a function of
K+N parameters, where K is the number of parameters associated with g(-).
For example, let g(-) be given by

K
pix) = Z a.b. (x)
Fra N RS
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and the resulting mean squared error is given by

E ;[XN+1';%+1]2§ = Es[xuﬂ]zi' 2 nzf:l Jé:hn LI LN G SO

N N K K
PN ZZI § o E R KB )

The functions bj(-) should be determined so that there is considerable

flexibility in the functional form of g(-) and also so that the expectations
in Eq.(5) could be determined from the statistical information at hand. For

example, if bj(x)=xJ, then the necessary statistical information would con-

sist of the higher order joint moments.

The next step might be to minimize Eq.(5) over the N+K parameters.
This would result in N+K equations of third order polynomials in the param-
eters. This simultaneous optimization over all the parameters presents
potential numerical problems. As an alternative to the simultaneous opti-
mization over all the parameters, we will now describe an iterative tech-
nique.

The basic plan of the iterative technique is to consider the two sets
of parameters separately and to iteratively optimize over one set of param-
eters while holding the other set fixed. This iterative technique results
in the need to solve systems of linear equations, as opposed to the need to
solve systems of equations in third order polynomials such as encountered
in the effort to simultancously optimize over all the parameters.

We will assume that the parametric form of g(-) is such that with the
proper choice of parameters we could have g(x)=x. In this way the mean
squared error that results will always be upper bounded by the mean squared
error associated with the optimal linear filter.

The iterative technique is as follows:

Step 1. Determine the optimal weighting sequence
hO""’hN—l for the case where g(x)=x.

Step 2. Evaluate the resulting mean squared error.

Step 3. For this choice of h determine

0""’hN—l’
al,...,uK so as to minimize the mean

squared error.

determine
0"";hN-l'

Step 5. Repeat Steps 3 and 4 until the improvement
in the mean squared error is negligible.

Step 4. For this choice of apsee sy,

the optimal weighting sequence h

The apseeesdy and hO""'hN-l that are obtained in Step 5 after the

termination of the iterations determine the system. Step 1 and Step 4 make
use of the Projection Theorem and result in E{xN+1g(xj)} =

]
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N
z:hN nE(g(Xn)g(Xj)}, j=1,....N. Step 2 makes use of Eq.(5). Step 3 also
n=1
makes use of Eq.(s) and results in
K

2:11 h'-m ZajE{bj(Xn)bj(Xm)} + Eéaakg{bj(xn)bk(xm){]

N k#j

IV. EXAMPLES

In this section we consider a particular parametric form for the ZNL
and a specific model for the random sequence. The iterative method described
earlier is used in this case to determine a filter of the form of Eq.(l).
We also determine the mean squared error resulting from use of the optimal
filter and that resulting from use of the optimal linear filter. Perfor-
mances of the filters are compared and it is scen that in several instances
the improvement in mean squared error of the suboptimal filter over that of
the optimal lincar filter is a signiticant fraction of the corresponding
improvement of the optimal filter over that of the optimal linear filter.
Assume that we have knowledge of the regression function

r(x) = F.iXN_Hi)Sfx) . (6)

e Jea o

e
Ty

]
: Notice that if we choose p(x)=r(x) and
E ho= {1, n=0
§ n 0, n#0 ,

then the estimate would be the same as that of the optimal filter based on
the most recent observation. If we were to use the Projection Theorem to
choose a different weighting sequence {(h }, we might do better. It seems
reasonable to expect that il we were to parameterize g(-) in such a way that
by proper choice of the parameters we would have g(x)=r(x), and then use
this parameterization ot the ZNL in the iteratlive technique described
carlier, we might determine o system of the torm of Eq. (1) exhibiting very
good performance. This is how we will choose the ZNL in this section.

As a model for the random sequence {X“,n=1,2,...} we will assume that

xn - (Zn)2k+1 N

{ where (Zn,n=1,2,...} is a zero mean stationary Gaussian process with unit

variance and autocorrelation function p(-).
- First we will derive an expression for the regression function of
A Eq.(6) when the random sequence is given by Eq.(7). Using results in [5],
we have that

: . 2k+1
(X, 1%} = E{(AN+1) lzn}

- n
| . Eo[pm] b 0_(Z,)

- n 1/ (2k+1)
n{_:O[o(l)] bnon( (x) )
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where the series are mean squarce convergent, the constants {bn} are given by

o 2
1 2k+1 ~x
b = f (x) 6 (x)exp (“X-) dx , (8)
" n ()

and en is the n-th normalized Hermite polynomial given by

n 2 n 2
6 (x) = (-1) exp (%—-)—g;- exp (:g—) .
n A;r dx

We see from Eq.(8) that hn=0 for n>2k+1 and, in fact, the bn's can be

obtained trom the relation

2k+1
2k+1
(x) = gg% b6 (x)
For example, for k=1,
3, n=1
b = { /6, n=3
n 0, n#l,3

and r(x) is given by r(x) = [n(l)]xx + In(l) (l-[p(l)]z) xl/3
For k=2,

15, n=1
b = | 1078, n=3
n 2/35; n=5
0, n#l

and

2
e = [P + 100,11 (1-e12) %+ 1500y (1-Lo 1) 12) 515

In general, for an arbitrary positive integer k, it is easily seen that r(-)
has the form

)(2k—l)/(2k+l) (x)(Zk-3)/(2k+l)

r(x) = Crar X + ck(x +

+1 “k-1

+ ... + cl(x)l/(2k+1) .

where the ci's are constants that can be determined using the above procedure.

Thus we choose the ZNL g(-) to be

k+1

g0 = 3 ai()()(211-1)/(2k+1)
i=1

where the parameters a, are to be determined by the iterative procedure. In

utilizing the iterative procedure we encounter the need for the knowledge of
moments and joint moments of {Zn} (see [6]), which are given by

. p _ 135 ...(p~1) for p even
h{(zn) } B { 0 for p odd
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(r+s-1)p (i)u(r-1,s-1,i)+(r-1) (s~1):

(1—[0(1)]2) u(r-2,s-2,i) when
(r+s) is ‘even

0 when (r+s) is odd

N 4 sl _ C iy =
E {(Ln) (Zn+i) } = u(r,s,i)

Observing that p(l,1,i)=p(i) and u(2,2,i)=1+2[p(i)]2 , all higher order
joint moments can be calculated using Eq.(9).

In order to compare the performance of the suboptimal estimator with
that of the optimal estimator, we have obtained expressions for the mean

(9

squared c¢rror associated with the optimal estimator. For the optimal system

we are interested in

. 2k+1 .
E {(AN+1) lzN,...,zl}

Notice that this is the (2k+l)-st conditional moment and the conditional
distribution has the functional form of a Gaussian distribution. Thus the

minimum mean squared error follows using standard properties of the Gaussian

distribution (sce, for example, [7]). For k=1 we find that the minimum
mean squared error is given by 15 =~ Pi[9E{Y2} + 6P1E{Y4} + Pi E{Y6}] ;

and for k=2, the minimum mean squared ervor is given by
945 - P? [225 EiY2) + 30091E(Y“& + 130P§E{Y6} + ZOPiE{YB} + Pis{ylo}]

In these expressions P

1 is a constant and Y is a normal random variable with

2
zero mean and variance y . The constants P, and y2 are defined as follows.

Assume without loss of generality that the correlation matrix R associated
with Zl""’ZN+1 is positive definite (if it is not, the data can be re-

duced to achieve this result). Then P, is the reciprocal of the element in

1

] - 1 .
the lower right corner of K ~. Denote the first N elements in the last row

of R as r ... Then

1 N

2 N 9 N-1 m
LA Z (ri) + 2 E Z N-n+1"m-n+1° (N-m)
i=1 m=1 n=1

The mean squared error associated with the optimal linear filter can
be obtained in a straightforward fashion.

In the following tables results are presented comparing the suboptima
filter to the optimal filter and the optimal linear filter. Several

1

correlation sequences for {Z } are considered, both the third power and the

. n .
fifth power of Zn are uscd as models, and examples for two observations

and five observations are given. 1In these tables L 1., and Lm are the

1 in

mean squared errors resulting from the optimal linear filter, suboptimal
filter using a ZNL, and thc optimal filter, respectively. The quantity

ny is the percent of decrease in L1 when the suboptimal filter using a ZNI

is employed, i.e. n = IOO(LL—L)/LI. The quantity n, is the percent of

possible improvement in Ll using the optimal filter, i.e. n, = 100(L]—Lmi1
I

The quantity n, is the normalized percent of improvement over the lincar

filter yiven by the suboptimal filter using a ZNI., i.e. iy = 100 ”1’“’ =

IOO(Ll-L)/(Ll—Lmin).

)L

1
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p(l) n(2) n(3) n(4) p(5)
1 .15 .975 A4S .35885 .291
2 .885 . 7887 .70762 .639 . 5805
g} .95 L3155 .187 11445 .07183
. 4 .55 . 395 319 . 26885 .23023
5 L4625 L2375 14675 .09448 .06207
6 .81333 .6066 .5 L3333 .1666
7 .5787 .2963 .125 .037 .00463
8 L4822 .1975 L0625 .0123 .00077
Table Correlation sequences corresponding to Tables 2-5.
Iy : Lmin " i "3
1 09,1983 8.8614 8.8581 3.6 3.69 97.3
2 5.1744 5.0622 5.0599 2.16 2.21 97.6
3 12.5987 12,1084 12.108 1.8% 3.89 99.8
4 12.3196 11.9216 11.8952 3.23 3.44 93.7
5 13.6849 13.2957 13.293 2.84 2.86 99.1
6 6.9247 6.6228 6.4926 4.36 6.23 69.8
7 12.2903 11.7732 11.7259 4.54 4.59 98.8
8 13.3219 12.8142 12.8123 1.81 3.82 99.6
Table 2. Mean squared errors and percentages of improvement tor k = 1.
L1 . l'min " i) Ny
1 727.42 704 .58 704.22 3.13 3.18 98.1
2 453.78 444.78 444 .49 1.98 2.04 96.7
3 887.49 859.95 859.9 3.1 3.1 99.7
4 879.44 854.5¢ 851.86 2.82 3.13 89.8
5 920.93 899,7 899.43 2.3 2.33 98.5
6 584 .57 564 .98 550.99 3.41 5.74 59.3
7 876.33 845.86 845.24 3.47 3.54 97.7
8 910.86 BH4.62 884.42 2.88 2.9 99.2

Table 3. Mean

h

squared errors and

h

h,

percentages of improvement for k = 2.

h

h

a

a

0 1 2 3 4 1 2

1 L6115 L0127 . 008 . 0059 .0094 1.519 .6811

2 . 7899 . 0084 L0064 .0051 .0132 .674 .862

3 L4026 .0093 .0049 .0029 .0024 2.7896 LAll4

4 . 3654 .0687 L0433 .0297 .028 2.4749 L4334

5 .2827 0407 .0164 .0076 .0047 3.3779 .2656

6 .776 -.0234 -.0175 -.0111 -.0662 1.2015 .76135

7 4476 -.028 ~-.018 -.01 -.0015 2.775 L4375

8 . 1505 -.0247 -.0121 -.0032 -.0017 3.342 L3215
Table 4. The coetficients X + a };. and

a, of the nonlinearity g(x) = a

the hi's ol the suboptimal syscem for k = 1,

2

1
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h0 h1 h2 h, ha al a2 a3
1 L4779 .0119 .0061 .0042 .0052 4.0527 3.7727 .493
2 .7065 .0097 .0067 .005 .0093 .7136 2.032 .7585
3 .2563 . 0059 .0028 .0017 .0014 15,175 4.5019 .196
4 .2466 .0472 .0282 .019 017 11.733 4,465 .1966
5 .162 .0227 .009 .0043 .0026 23.858 3.802 .0839
6 .6534 -.034 ~.0234 -.0136 -.024 2.742 2.9562 .6302
7 L2864 ~.0184 -.0096 -.0054 .0002 14.7841 4.5769 L2267
8 .2032 -.0139 -.0065 -.0019 . 0008 22.373 4.2663 .128

X 3/5 1/5
Table 5. The coefficients ai of the ZNL g(x) = a,x + a,x / + a.x and

3 2 1
the hi's of the suboptimal system for k = 2,

lp(l) n(2) by h, a, a,

1 .9 .7 1 1.2377 -.4974 .9333 .82983

2 .8 .5 2 .8837 -.3001 1.6639 .6923

3 .8 .3 3 1.095 -.6467 2.3987 .6089

4 .7 .1 4 .7927 ~-.4786 3.2982 4545
Table 6. Correlation Table 7. The coefficients ai of the ZNL
sequences corresponding , - 13 '

to Tables 7-8. g{x) a,x + ax and the hi s of the

suboptimal system for k = 1.

L) I Lmin i Ny Ny
) 3.7487 3.494 3.1354 6.79 16.3  41.65
2 | 7.566 7.02/%  6.7406 7.12 10.9  65.32
3 | s.7804 4.3 1.0231 24.18 82.3  29.62
4 | 8.9825  7.1689  4.9674  20.19 44.7  45.16

Table 8. Mean squared errors and percentages of improvement for k = 1.
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A NOVEL APPROACH FOR DESIGMING NON-LINEAR DISCRETE TIME FILTERS: PART ||

T.E. MCCANNOM & N.C., GALLAGHER
School of Electrical Engineering
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W. Lafayette, IN 47907

G.L. WISE & D. MINOO-HAMEDANI
Department of Electrical Engineering
University of Texas
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B ABSTRACT

We propose two methods for designing nonlinear discrete time filters.
The first method involves an iteration procedure that for simple cases,
converges in one or two iterations. However, convergence problems in this
approach for higher (> 1) time order filters leads to a second method which
Is based upon an augmented Hilbert subspace on which the orthogonality
principle can be easily applied.

1. [INTRODUCTION

In many problems, it can be shown that a non-linear filter either out~
performs the linear filter or performs a function not possible with a
linear filter. One example of this is the homomorphic processing of speech
which utilizes a linecar process followed by a non-linearity that is fol-
lowed by another linear processor [1].

This paper is concerned with the non-linear prediction problem. We
consider the system shown in Fig. 1,

m [ L1
—_— I 3 x! DIGITAL |y
i=0 FILTER

Fig. 1. Non-linear System Under Study.

where we investigate two different methods of design. In Section 1!, we
consider an iterative scheme and give examples of its use. In Section
111, we develop a new non-iterative technique motivated by the poor per-
formance of the iterative scheme found in several non-trivial examples. It
is also worthwhile to point out that in Part | of this paper, results are
obtained based on complete knowledge of the process statistics, while in
Part |1 we only assume that we have a finite sequence of samples from the
random process. We also require the random process to be Wide Sense
Stationary (WSS) and to have finite higher order moments.

I1. ITERATIVE FILTER DESIGM PROCEDURE

We propose the following iterative procedure for determining the MMSE
filter coefficients for the system of Fig. 1.
(1) Assume the non-linearity is not present and design the
optimum (Wiener) linear filter.
(2) Keeping the unit pulse response of the linear filter con-
stant, compute the polynomial coefficients required to
minimize the mse,
(3) With the polynomial coefficients fixed, redesign the
optimum linear filter with the polynomial non-linearity.
(4) Repeat Steps (2) and (3) unti) convergence.

Presented at the Sixteenth Annual ALLenton Conderence on Communication,
Control, and Computing, October 4-6, 1978,
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Coasider the example where we have a second degree polynomual and a
first order linear filter as shown in Fig. 2.

‘ ; 2 ———
— i ao + alx + a2x hlxn~l

Fig. 2. Example of Non-linear System.

Step 1 tells us to design the optimum linear filter assuming the non-
linearity Is not present. This linear predictor is given by

Xn = hl Xn-1
where in Z estimate of the nth sample of the r.p. x(t)
Xn- 3 = actual value of the (n-j)th sample of x(t)

Using the orthogonality principle
E{(xn - h, xn-l) x._1} =0

we find the optimum linear filter to be

R, (1)

h‘ -W (1)
where R (J) 2 E{x x__.} and we have made use of the fact that the r.p. is
W.S.S. nn=J

Step 2 tells us to compute a_, and a, to mnnlmtze the mse keeping
hl constant. This non-linear predtclor is glven by
x, = hy [ao +tagx o+ azxn_]] (2)

Using this expression in the mse equation
= o - z
mse E{(xn xn) }
we have that
- 2 - 2
mse = E{[h (a_ + a;x _; + a,x"_,) - x 1%}

n=-1 n

We minimize the mse with respect to the filter coefficients ags Ay and a

by taking partial derivatives 2

amse amse Jmse
_Bo’ -—-—-o’ __=°
aao aa, aaz

Then the coefficients a,, a) and a; that satisfy the following set of
matrix equations are computed:

EOCx ) m et meed b eod 1] e
- 3 2
E{ann-l} hy E{xn-l} hy B(x 4} hy Elx _,} 3, (3)
2
E{ﬁﬂ hlE{ﬁvl} hlE{ﬁvl} hl %

Step 3 tells us to compute the new optimum linear filter with a,, a) and
a; constant. The orthogonality principle together with Eq. (2) glves

ElDx, = by (apy + oy + )] x4} =0,
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and we find the new linear filter to be
. E{x x__,}
hy = B ‘ ) (4)
ay E{x_ 1} + ay E{x__,} +a  E{x__,}

| f we solve Eq. (3) for a,, 3y and a; and substitute these values into Eq.
(4) we find
. R

h‘ 'w'hl (5)

where the second equality follows from Eq. (1). It is seen that for the

non-linear predictor of Fig. 2, the iteration procedure converges in one

iteration for an arbitrary W.5.5. r.p. x(t) with finite first, second and
third order moments. As an example, consider the following signal

2

Xn = Ky Xy t kgt ey g
where u, are iid, uniform (-l, %). We can easily obtain the optimum MMSE

predictor {2}, [3] for this signal by utilizing the conditional expectation

Xy = Elx [x 10 X g eee)

2
=k, Xtk (6)

since E{unlxn_‘, X 9 eee} =0, If we let Py = .005, kl = -1.74 and
k, = 0.87, the linear filter gives a mse = .293, Calculating the required
nts needed for the solution of Eq. (3) empirically with a computer, we
find the values of 3, 3 and a, to be
a = .005525
82 - 7-9‘3872
By computer simulation, we find that the non-linear system glives a

mse = 2x10 6, a significant improvement over that obtained with the linear
filter alone. It is possible to analytically solve for the optimum pre-
dictor coefficients; we find the values of a_ , a, and a, by equating Egs.
(2) and (6) and also using Eq. (1). The valles are foufid to be

a = -3.960017
a = 0
a, = 7.920035
This result agrees very well with the computer simulation.
Next, consider the example as shown in Fig. 3.

N P 1%p-1
s thox , >
27n=-2

Flg. 3. Example of Non-linear System.

We again apply the iteration procedure as outlined by steps (1), (2) and
(3) above. Applying the signal




v

2
Xn = kl Xn-1

+pypuy, ) (7)

where {un} are iid, uniform (--‘2-, %), we can casily show the procedure ter-

minates after two iterations. However, if we use a general second order
polynomial
2

a,x" + a\x + a
simulation with the signal of Eq. (7) indicates that convergence Is very
slow unless the initial choices of aj;, aj, a5, hy and hy are close to the
optimum solutions, and then convergence occurs in 2 to 3 iterations.
Simulation also shows strong dependence of the final solution on the inil-
tial choices of 3, a;, a_, h‘ and hz. In an attempt to force the solution

to the optimum result for the general case, we propose the following
modi fied iteration procedure,

(1) Set hy = hy = -cc =h =1

(2) compute the polynomial coefficients required to minimize
the mse. ‘
(3) Design the optimum lVinear filter using the polynomial non-
linearity.
(4) Repeat Steps (2) and (3) until convergence.
But even with the modified procedure, simulation indicates sluggish con-
vergence, Flg. 4 demonstrates this convergence with plots of mse versus
number of iterations for the polynomial non-linearity a, x2 + a) x + a

(o]
.08 (A)
|
o .04}
€
!
L N— (8)
0}
A (c)
1 15

N (number of iterations)

Fig. 4. Demonstration of Convergence. Curve {A) shows mse vs N
where the initial values of hy and h, are the optimum
linear filter coefficients. Curve (B) shows mse vs. N
for the initial values hy = hy = 1. Curve (C) shows
mse vs N where the initial values of hy and h, are the
optimum non-linear coefficients.

It appears that this method only works well for very simple structures and
for more general cases another type of design procedure is required.

f1l. NON ITERATIVE FILTER DESIGN METHOD

In Section Il, we have studied an iterative procedure for the design of
the non-linear predictor in Fig. V. This system leads to a prediction
better than that obtained from the linear predictor, although in many cases
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the Improvement is not significant. We would, however, like to retain the
basic structure of Fig. 1, which can also be implemented as shown in Fig.
5 and 6.

m
o I h x
i=0 i

DELAY +

Fig. 5. Alternate Structure to the Mon-linear System of Fig. 1.

LTI
Digital Filter

2 LTI
Digital Filter

x™ ‘ LTI
Digita) Filter

Fig. 6. Equivalent Structure to the Non-linear System of Fig. 5.

te

Constant Due
To X° Terms.

We can now express the non-linear predictor of Fig. 5 as

- k m i
= I .
x ks ifo hi] % (8)
Defining ho s I hoJ
J=1

where the hoj are the constants multiplying the x:_J terms, we can also
write Eq. (8) as

. k m i
X, =h, + jE‘ ifl hlj o= (9)

We now minimize the mse with respect to the coefficients hU and ho where

mse = E{(X_ - x)2) (10)
by setting

imse amse
ﬁ':-- 0, 'aT‘-i_j'- 0. I = I’z..n.,m j - ‘.2.....k




Consider the structure where m = h = 2. Substitutingm = h = 2 into Eq.
(9) we have the non-linear predictor '

2 2
Xn = hg ¥ hyx o+ hy Xyt higX gt hyXios an

When we substitute Eq. (11) into Eq. (10) and minimize the mse by taking
derivatives, we find the coefficients must satisfy.

T e e k) E6d | [hg |
Elx _y} E{x:_l} E{xg_l} E{x _1%,-5} E{xn_,x:_z} hi
EG ) B ) Eix) ) EOC_ % o} EOG g} | |y
Elx,.p} Elt 1% p) Egyx o} B ) Elx_y) hy2
_F{“:-z} Bix, iyt B0 pd ) EGS ) Exy,) | 22

-k{xn}

E{x x _}

= |etx 2 (12)
E{x x _,}
_E{xnxrza-zl

It is seen that the solution requires knowledge of the various moments and
cross moments. Since the r.p. is assumed W.5.S., we can apply well known
procedures to estimate empirically these various moments. How consider the
example where the signal is generated by use of the equation
2

X, = klxn-l + k2 * Py Ui
{u,} are iid, uniform (-%, %). From Eq. (6), we know that the optimum
predictor is given by

- 2

X, mkyxo g vk, . (13)
This optimum result corresponds to the solution h, = kj, hZ] = Ky,

hll =h12 = h22 =0,

It is easily shown that this solution satisfies Eq. (12), and hence
Eq. (12) leads to the optimum result for the signal in Eq. (13). Likewise,
for the general polynomial signal of the form
s P 8

X = I I v, _x

" om0 geo P 7O
Eq. (8) again leads to the optimum solution. These results can also be
interpreted in an alternate way. First, define a Hilbert Space over the
probability space and the set of r.v. x such that [4), [5]

(14)

+ u
Pln'

E(]x|%} < =
with the inner product defined as
<x,y>=E{xy}
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We then generate the smallest subspace that contains the elements of the
form

i
(x)" = w

where x, is the nth sample of the r.p. x(t) and uj is chosen so that
i
E{(x) wl=0.
The condition

E{I(xn)I - ullz} <

implies all moments of the r.p. of interest upto and including the (2m) th
moment (m 4 highest degree polynomial used in the predictor) be finite.
gsing this augmented subspace, we then have a predictor for Koo denoted by
X0 glven by

- mok i
= h,. , - 1
X iﬁo jﬁl IJ(xn_J u;) (15)

Expanding Eq. (15) and grouping all the constant terms together, the
predictor for X becomes

. m k i
X, =h + iﬁl jil hlj Xne (16)

which is identical to Eq. (8). We can use the orthogonality principle to
determine the hi.'s. Consequently, we must solve the following set of
equations J

m k )
E{(x = h, - if‘ 32‘ h;jxn_j)xn_p} =0 L =0,1,2,...,m (17)

P=1,2,...,k
When m = h = 2, Eq. (17) leads to Eq. (12). Again consider the signal

x = <1.7h x2_| + .87 + .005 u, ,

%). Simulation for the case k = 1 shows

excellent agreement with the known optimum result. However, the deter-
mininant of the coefficient matrix vanishes for the case k = 2, This is
explained by the observantion that the signal can also be represented as

where {u,} are iid, uniform (-%,

2
x = -1.74 Xt .87 (a+g) + .005 u

where atg = 1, Since

2
X = 'l.7b xn_z + .87 + .005 un_].

n-1
then '
2
.878 = Bx .y * 1.74 Bx _o = +005 Bu _; ;
hence
2 . 2
Xn = -'o7h Xn_l + 0870 + an_‘ + ‘-7“ an-z + .005 Un - .005 Eun-l

We note that there are an infinite number of equivalent signal representa-
tions and therefore an infinite number of equivalent predictors. This
leads to the following design procedure

(1) sSet m. (highest desired polynomial degree)




-

-y

(2) set k=1. (k £ number of past samples used in the prediction)
(3) Solve for the hi ;e

{4) Set k=2. Compute the determinant of the coefficient matrix.
|f the determinant is zero, terminate; otherwise proceed to
step (5).

(5) Solve for the hi e

(6) Continue incrementing k, either until the determinant
vanishes or a desired value of k is reached.

We also note that functions other than polynomials can be used in the
predictor. In this case, the predictor is of the form

x = £ ¢ h.. f(x_.)
n j=] ju=I 1j "1 "n=j""?

where we assume the r.v. fi(xn_j) possesses the proper second moment

properties. In addition, the fj{x) should be continuous and bounded over
the range of arguments to insure that the augmented subspace is complete
and the condition

E(F, (0 [?) <=
is satisfied.

tV. SUMMARY AND CONCLUSIONS

in this paper, we investigate two methods of designing non-linear dis-
crete-time filters. The first methods makes use of an iterative procedure,
that is alternately computing the linear filter coefficients and the non-
linearity coefficients. We show how this procedure performs by applying
jt to several examples. Because the resulting filter design is dependent
on the initial conditions before iteration, this method is only applicable
to certain problems. For example, this procedure appears acceptable when
the starting point of the iteration is close to the optimum design. We
then present a second non-iterative procedure that makes use of the
orthogonality principle over an augmented subspace. The performance of the
resulting design is tested by use of several examples and is shown to
provide excellent results. This method appears to work well even when the
general form of the optimum filter is not known a priori.
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QUANTI ZATION OF BIVARIATE CIRCULARLY SYMMETRIC DENSITIES

J. A. BUCKLEW & N. C. GALLAGHER
School of Electrical Engineering
Purdue University

West Lafayette, IN 47907

ABSTRACT

The problem of quantizing a two dimensional random variable whose bi-
variate density has circular symmetry is considered in detail. Two quan-
tization methods are considered, leading to polar and rectangular repre-
sentations. A simple necessary and sufficient condition is derived to de-
termine which of these two quantization schemes is best. |f polar quanti-
zation is deemed best, the question arises as to the ratio of the number of
phase quantizer levels to that of magnitude quantizer levels when the prod-
uct of these numbers is fixed. A simple expression is derived for this
ratio that depends only upon the magnitude distribution. Several examples
of common circularly symmetric bivariate densities are worked out in de-
tall using these expressions.

1. [INTRODUCTION

Consider a two dimensional random variable X whose bivariate density
Is circularly symmetric and we desire to represent this quantity by a
finlte set of values. One possible representation of X leads to a
Cartesian co-ordinate system expression wherein we individually quantize
the two rectangular components of the random variable. Another common rep-
resentation leads to a polar co-ordinate representation where we quantize
the magnitude and phase angle of X. These two representations are mainly
chosen for their computational feasibility and ease of implementation.
Other authors have considered the general problem of multidimensional quan-
tization; 2ador {1) derives an expression for the minimum error achievsble
by a multidimensional quantizer for an arbitrary density, but no insight
into the required quantizer structure is attained. Chen [2] describes a
technique whereby one can use a recursive computer technique to solve for a
Y'good" quantizer, but the optimality of the final solution Is not assured.
By constralning ourselves to circularly symmetric densities and also to
either Cartesian or polar co-ordinate systems, it becomes possible to re-
duce the optimal two dimensional quantization problem to one dimension.
Max [3] develops necessary conditions for the optimality of a one dimen-
sional quantizer. Panter and Dite [4], give a formula for the asymptotic
error to be expected for optimal mean square error quantizers (of suf-
ficlently smooth input densities).

In Section Il of this paper we obtaln a simple criterion by which to
determine whether polar format or rectangular format gives a smaller mean
square quantlzation error. It is shown for some very Important cases,
notably for the Gaussian bivariate density, that polar format is asymptot-
Ically superior.

If polar format is to be used and the product N = NgN, is fixed, where
Ng and N, are the number of phase and magnitude quantization levels, re-
spectively, the question arises as to the optimum ratio Ng/N.. We derive

a simple expression for this ratio that depends only upon the magnitude
density.

In Section 111, we provide several examples of common circularly sym-
metric densities (e.g. marginal densities are Pearson |!, Pearson Vil,
sinusoidal, and Gaussian) and we address the question of whether the rec-
tangular or the polar format scheme gives a smaller quantization error.
Presented at the Sixteenth Annual AlLlerton Congerence on Communication,
Control, and Computing, October 4-6, 1978.
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I1. DEVELOPMENT

Consider the mean square quantization error Eg of a polar format rep-
resentation,

N. N
) r c.

E, = I t rd s
J=1 i=] €1

jdj 2 fr(r) dr do

a
| Ireje-bl e J| o . . (1)

-1

Iimplicit use has been made of the fact that in circularly symmetric bi-
varlate densities the magnitude random variable with probability density
f.(+) is independent of the uniformly distributed [-w,n] phase random
variable. The b; and d; are the output levels of the magnitude and phase
quantizers corresponding to input levels lying in the intervals (ai-], a;]
and (cj-1, cj}, respectively. Lt is shown in [5] that the optimal phase
quantizer Is” the uniform quantizer. This allows us to simplify €q. (1);

sin —-
ré 2.2 Ng
Ep = I f [r +b‘-2rb‘-——1r—-4 f(r) dr . (2)
j=} ai_l N-e-

Differentiating with respect to b, we find the optimum bi Is

a
sin ﬁL fal rf(r) dr
- 8 i-1 '
bl BN 3 . (3)
Ne / f(r) dr
2141

The equation glven by Max for the output levels bf of an optimal one dimen-
sional magnitude quantizer is found in [3] to be

-

! i rf(r) dr
al_
b = = , (4)
3
! ef(r) dr
A

where the optimal input interval endpoints a{ (for the one dimensional
case) satisfy
bl + b‘
. i i+1

If we minimize Eq. (2) with respect to the a,, we then arrive at the
necessary condition (for the two dimenslional case’

by +biyy by +bI,y
al - L = 2 =9 (6)
slnn—
0
2(: 5 )
Ng

This equation indicates that the quantizer interval endpoints for the
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optimum magnitude quantizer in the two dimensional case Is the sane as the
quantizer interval endpoints for the optimum one dimensional quantizer.
From Eqs. (3) and (4) and the preceeding discussion, we have the following

relationship between the output levels bi and b]:

-l
N
b"=-——-—-e;'—b'. A7)
sin =
NO
Consequently, Eq. (2) becomes
n
2 SInT‘-e- 2 "r 2 2
E_ = E{r‘} - 0——;———0 L (bf) ! f(r) dr , (8)
P [ 3.1
] -

where E{-} is the statistical expectation operator. In [6] it is shown
that the mean square quantization error for a minimum mean square error
quantlizer Is simply the input variance minus the output variance. If we

denote by E§ the mean square quantization error produced by an optimal N

level quantizer for the random variable X, we may rewrite Eq. (8) as

sin —= sin o=
N N_
, = 926"+ (1 - (=% £t . (9)
Ne Ne

Our problem now is one of characterizing the quantity Ez. Panter and

Dite [4) give a formula for the expected error of a minimum mean square
error quantizer with a large number of output levels and a smooth input
density. This formula is

K
N X
E, =
X \E
where
. [s 1‘(:&)‘/3 dx]3

Ky ™ 3 . (10)

Roe [?7] also derives some asymptotic formula which were later used by Wood
(8] to rederive Eq. (10). Roe's formula depend on the truncation of a
Taylor series expansion of the input density. Wood, in his formula, ex-
plicitly states that the input density and the flrst few derivates (up to
order five in some cases) must exist and be continuous. Panter and Dite,
in their derivation, require that as the input intervals become very small,
the density function may be approximated as a constant over each interval,
In [1] it is shown that a sufficient condltion for Eq. (10) to hold is that
f(x) be Rliemann integrable and that E{x2*¢ < = for some § > 0, in general
a much less severe restriction than continuity or differgntiabillty.

We make use of the approximation

2
-:1-1‘5-. . ()

and of Eq. (10) in order to reduce Eq. (9) as

In_xy2
(3-{}35
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|f we denote as N the total number of output levels allowed to represent
the two dimensional random variable X, we have the following relation,

N=N_ N . - (13)

Since K, > 0, It is simple to show that N, = 0(N'/2) and Ng = 0(N'/2) by
differentiating €Eq. (12) and solving for the optimal quantities. Making
use of this fact and Eq. (13), we may, assuming sufficiently large N, write
Eq. (10) as

2

E ..':L’i‘.’.+2."2 (14)
P W2 3,2
0 0

This is then optimized with respect to Ne and yields the optimal Ng as

2
2 21\ 1/2
Ne = (-3K—r) N . (15)

This leads to the following expression for the minimal attainable asymptot-
ic polar format error,

(€) = ofxr2n (16)
p’ opt 3 N °

Now consider the problem of optimally quantizing the random variable X
In a rectangular format. The mean square quantlzation error, Ex» of this
representation is given by .

N
X 'y 9, e
- J i - 2 - 2
E, 'El jEl fg Ie [O-F)% + (y hj) ] fx’y(X.v) dxdy , (17)

i-1

where N, and N, are the number of levels in each of the respective
orthogonal random variables. The other notation should be clear.
Equation (17) may be written as

Jj=1

N N
x e Y 9.
£ = & f ! (x-fi)z f ) dx+ 1 /) (y-hj)2 £ (y) dy . (18)
y
=1 e 3= ey

By symmetry arguments (since f,(x) = f,(x)), we may argue that

Ny = N, = N'/Z. The quantizer that minimizes the above equation is simply
the minimum mean square error quantizer for each of the two components.
Therefore, again using Eq. (10) we have for large N.

2K

.3
E, T

where
IO MANPE

K, = = : (19)

Comparing Eq. (19) and Eq. (16),we say that polar format is asymptot-
lcally better than rectangular format if and only if
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or

Kr
Kx > '—3- " . i (20)

in other words, if the inequality is satisfied and the original input
probability density is Riemann integrable, then we are guaranteed that
there exists an Ngp such that for every N > N,, polar format quantization
will perform better than rectangular format quantization.

If polar quantization is deemed best for a particular density, then
what is the ratio Ng/N. that provides the smallest total error? This
question is answered with the use of Eq. (15); we find

2

N N
R =@ = (21)
opt r opt r

111, EXAMPLES

For our first example, we calculate the relevant parameters for a
random varlable whose marginal density Is of Pearson Type VII. This dis-
tribution is a generalization of Students-t distribution. The bivariate

density Is
2¥(v-1)"
flx,y) = = ,
T (2(v-1) + xE 4 D)V

(with v > 1 in order to assure finite variance) and the marginal density
appears as

~-® <X,y <o (22)

flx) = —2lv=1)Y T(v+1/2)
/i T(v) (2(v-1) + x2)V*F 172

where T(.) is the gamma function-and where we have normalized the distribu-
tion so that f(x) has unit variance. The magnitude density is always de-

rived by substituting in r for'«Az + y2 in f(x,y) and multiplying the re-

sult by 2nr, as shown by a simple change of variable. Eq. (23) yields
after some tedious algebra

~w<x<m €23)

(o3 ; 5513
K = ’ ‘.)
Y s(g s ve1) _ (2

where B(-; <) Is the beta function. We perform similar operations with the
magnitude density to yleld

K, =l racd ; 213, (25)

2K
In Fig. 1 K, (solid line) and,’-ji n (dotted line) are plotted as a func-

tion of v for values from 1.1 to 21.1. As shown by this graph, polar for-
mat Is always asymptotically best for this class of distributions. An in-
teresting point about this set of distributions is that in the limit as

v + » Eq. (23) converges to a unit variance Gaussian density. Therefore,
taking this limit in Eq. (24) and making use of Stirling's approximation,
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we have

/37
K = =2

y 22,721 . (26)

Wood [8) estimates this number as 2.73 which is close to our derived value.
From Eq. (25) we have similarly

SR RO ILEICT I (27)

which s the parameter for the Rayleigh distribution obtained in the limit.
Using these two values in Eq. (20), we conclude that asymptotically polar
formatting is better than rectangular formatting for Gaussian bivariate
densities. As a matter of interest, when we substitute the value of K.
found in Eq. (27) into Eq. (21), we find the optimal ratio Ng/N, to be
2.659. Pearlman [9) using distortion rate theory states that this ratio
should be > 2.596, which is in agreement with our result.

For the next example, consider distributions of the Pearson Il class.
The bivariate density is

floy) = X200 = 62+ P ¥
sy v v
2 (v+1)
where v > 0, and U(*) is the unit step function. The marginal density is
1

v3

u(2¢w) - (2 + y2)) (28)

fho = D 0e) - B 2 uaee) - F)

(29)
2%(ve1)¥ /7 T(v+)
For v = 1/2 we find that f(x) has a uniform distribution. For v = 1, we
have that the bivariate density is uniform over a circular region in the
plane. Using Eq. (29), we find

8(3 ; 2213

K = . (30)
X 1283 5 vy
From the magnitude density we derive that
o v{v+1) 2 w2443
k= S5k s s 5203 (31)

In Fig. (2) can be seen a plot of K (solid line) and FK T (dotted line)

as a function of v for values from 0 to 10. It should be noted that Eq.
(29) also converges to a Gaussian density as v » =, It is a simple matter
to check that the expressions in Eqs. (30) and (31) indeed go to the cor-
rect limits. From the plot it can be seen that for values of v in the in-
terval (0.0, .4) polar format is better. In the interval (.4, 3.635) it is
seen that rectangular is better, and from 3.635 to = polar again is better,
It appears then that for the circularly symmetric bivariate density whose
marginal density is uniform,we have the interesting result that rectangular
format is asymptotically better than polar format.

in the theoretical development and in the examples considered so far,
we have constrained the class of quantizers considered to two different
types, the rectangular format and the polar format. In general, neither
of these schemes will be optimal for an arbitrary two dimensional random
variable with a circularly symmetric probability density. 2Zador [1] gives
an expression for the asymptotic mean square error E, of the optimal two
dimensional mean square error quantizer. This equation is
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E, = C,/N, (32)
where
5 - () 12 2 (33)
C. s | f [ f X,y dxdy:] 33
zZ 4g/3 L7 xy

For the Pearson VI! density C, = 4,0307 v/(v-1), for the Pearson I| density
C, = 4.0307 v/(w1). Since in the limit as v becomes large, both of these
classes of densities converge to the Caussian, the smallest error attainable
for a two dimensional normal random variable is approximately 4.0307/N.

The best that we can do with a polar format representation is 4.95/N and
the best that we can do with a Cartesian format representation is 5.442/N,
There is certainly room for improvement here, however, the important thing
to note is that the structure of the polar format quantizer is known while
that of the theoretical optimum quantizer is not.

In section Il it was stated that a sufficient condition for Eq. (10)
to be valid is that the magnitude density function be Riemann integrable.
For most density functions of interest in modeling physical systems this
criterion is met. One group of densities that doesn't meet thls condition
is the set of atomic densities, i.e., densities for which probability mass
is contained at a single point. In a circularly symmetric bivariate den-
sity, the phase must be uniformly distributed [-n,n]. The only quantity
that can be discrete is the magnitude distribution, l.e. we may have
"rings" of probability mass distributed in the plane. Suppose we have a
single "ring'" of probability mass, where the radius of the ring is 1, l.e.,

F(r) = u(r-1) , (34)

where F(:) is the magnitude distribution function and U(:) s the unit
step function. The rectangular component marginal density is the sinusoidal
dens |ty

2
flx) = L= x) (38)
7 AJl=x .
This density function is Riemann integrable, hence Eq. (10) and Eq. (19)

are valid. This implies the rectangular format error is O(N-'). Now con-
N
slder the polar format case. For N, > 1, E,.r = 0, This implies the polar

format error for large N is O(N-z). Clearly then polar format is
asymptotically better for this density. By extending this argument, we may
say that if P(r=0)#1, then for any bivariate circularly symmetric density
with an atomic magnitude density with a finite number of atoms, polar for-

mat will give a smaller asymptotic mean square quantization error than
rectangular format.

1V. SUMMARY

In thls paper we have derived a simple criterion to determine whether
rectangular format or polar format gives smaller mean square error for
circularly symmetric densities. The optimal ratio of phase quantizer
levels to magnitude quantizer levels is also derived. Several examples
Including the Gaussian case have been studied in detail.

It Is interesting to note that polar format Is not always better than
rectangular format even for the case of densities with circular symmetry.

This research has been supported by the Air Force Office of Scientific
Research under grant AFOSR 78-3605.
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QUANTIZATION IN SPECTRAL PHASE CODING

Kerry D. Rines and Neal C. Gallagher, Jr.

School of Electrical Engineering
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West Lafayette, Indiana 47907

ABSTRACT

Spsctral Phase Coding (SPC) is a robust sub~
optimun digita! encoding scheme utilizing the
discrete Fourier transform. The quantization of
the SPC sequence {Yp} Is examined as an effective
quantization of the spectra! magnitude and phase.
A new encoding technique called Prequantized
Spectral Phase Coding (PQSPC) is introduced.
PQSPC exhibits the same robust characteristics
as SPC with a reduction In MSE. Ffor the case of
a double-sided exponential input density this
reduction in MSE is 47.5%.

1. INTRODUCTION

Spectral Phase Coding (SPC) is a robust sub-
optimum technique for coding a nonstationary or
large dynamic range discrete-time serles into
digital form. In previous work [1], the per-
formance of SPC in a mean squared error sense
has been evaluated. However, limited insight
is provided into the effects of the various SPC
parameters on overall performance. In this
papsr, we investigate the effect of converting
the spectral magnitude and phase of the discrete
signal into the SPC sequence {yp} before quan-
tization and transmission. In section |1, den-
sity functions for the magnitude and phase er-
rors at the recelver are obtained. These re-
sults suggest a method of improving the SPC en-
coding algorithm. in section 111, a techniqus
called Prequantizing Is introduced. The addi-
tion of Prequantizing to SPC offers a substantial
improvement in the overel! system performance.

It. SPECTRAL PHASE CODING QUANTIZATION ERROR

Spectral Phase Coding uses the discrete
Fourier transform (DFT) to encode a discrete-
time complex-valusd random sequence {an}f=d for
digita! transmission. The SPC encoding and de-
coding algorithms are given here. A detalled
explanation of the SPC procedure is available in
[2]. The spectral magnitude Ap and the spectral
phasc Op of the discrete sequence are given
below:

10
H~1 DOFT pyM-1
(a} g * (Ap . )p-o . 4]
SPC encodes the magnitude and phase of the spec-
2K-
trum by forming the sequence ("‘p)p-o glven by
o <
%t
- - d
Voo = 0, " Vg 4 (2)
-l A
where yp = Cos *

max
and Se= p Ap p-o:l,...,m-l.

The quantized sequence {Yp} Is transmitted and
used at the receiver to recover the original
discrete signal. The reconstructed discrete
sequence Is oF) s 1% " .

L H p pM, | M-

Gvd UL Ge e Womg + (3
This equation can be written In terms of the
equivalent magnitude and phase components at the
recelver,

e -1 9y, iy
G " Ge Ple P PN W
where Sp - % (ip + 39’")
- 1 ,a
Yoo3 B, - 8,0 . (s)

We defire 6, and ?p to be the effective quantiz-
ation levels of 8, and Yp that result when {yp}
is formed. The ogfoctlvo quantlzation errors of
Op and Yp are defined In Eq. (6).

- -
op Op .p

- -

=Y, - Y. (6)

The effective _errors op and d, are the result of
using 8 and Yp instead of 8p and v, to recon-
struct ?m) st the recsiver.

It is also possible to reconstruct the dis-
crete signal by sending quantlzed values of 8p
and Yp directly. We_define these quantized
values to be 8 and Y, and the resulting quanti-
2ation error for this case Is

- -
ﬂp .p Op

Ll A A (n
The two sets of errori !n Eqs. (6) and (7) are
eon?and to determine the effect of transmitting
{Tp} rather than {§,) and {Yp) on the ovarall
performance. We find the cf’octln quantization
errors ¢p and dp can be written as deteministic
functions of the Indlvidual quantization errors
n‘, and mp. This is first demonstrated with two
simple exampies. The quantizer has N lgwvels
uniformly spaced from 0 to 2r for both methods .

Example |:
E = § with output levels 0, g. ", 121 . Let

Op = 0.6 v and Yp = 0.k 1, than we find that
8 - w . Y
Op 0.5 Yp =0.5n

Wp"f ON'OJW.

Upon quantizing the value for #p and Ypen, we
have

Presented at the 1979 Conference on Injoamation Sciences § Systems, The John Hophins University,
March, 1979, To be published in Proceedings of this Conference.
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Wp - wm = 0.0 .
so' ~ ~
= 0. « 0, .
op 0.5« Yp S
Consequantly,

¢ =0.1n np-o.ln
d =<0, m =-0,)nw,

in this example, the effective quantization er-
rors are the sams as the srrors from direct
quantization.

Example 2:
Ne¥, 6p = 0.7 7, Yp = 0.1 7; we find that

ép =05 Y- 0.0
wp-o.sn ww‘-o.6n .

n @wg-O.Sw

0.75 = Y = 0.25% .

So,

@) €>
v ©
L]

Consequently,
op = «0,057 np 0.2 %
d = <0157 m =017,

In this case the effective quantization errors
have different valuas than the direct quantize-
tion errors. We note that the difference be-
tween ny and e, 1s /N and that the dl fference
between mp and dp Is also n/N.

A detailed comparison of the two sets of
quantization errors is developed in the Appendix
The results are given below:

- -! ! -!
°p"p R Ni"p’mpin'"d g

T 2n X oor 22T - .
TN W St 2 W TS S
rz ¥ 3 &

n N.Ninpm‘,:“ °rN-<-"p-mp:-N , (8)
and
T 7 -7 - T
dp-mp ’ ,2‘_<_ npmp <h and W< np mp :NL
T a7 -F r - r
wnp*u. zN hl npmp a3 f or 4 < np mp < 2"
T2 - - T Ly
e TN S MM SR OF S My < 3 (9)

Examining Eq. (8), we see that the effectlive
phase quantization error ep is a function of both
the magnitude and phase arrors np and mp. The
same is true for the effective error dp.

The distribution functions of ep and dp can
be evaluated in terms of the joint density f{n,m)
by use of Eqs. (8) and (9). For u"i 0,

n T
p*mpShe TNEp TpSN!
b4 2n
N 2 "p * mp = N

n
Folx) = P(np: X, g

1
* P{np LR

T -m . 27
'P{"pi'*N' n mp-;N)
This expression and a simllar expression for
Fa{n) Yead to jhe results betow, For -a ix<o,

X x -
F.(x) - f“ I o fln,m) dn om
0 L

i1

0 X
5, 7 "f(n,n) dn dm

R Ty
" v
- x+=
s N IWN f(n,m) dn dm
X Sem
N
x xfa
s 17 f(n,m) dn dn (10)
o™
and
x 0
F -
d(x) I-I ,-!.. f(n,m) dn dm
N N
x m’i'
+J " J f(n,m) dn dm
-'-‘ o
n
Tox <Im
o N J’: f(n,m) dn dn
o -

Tex I
s MR e . (1)
0 i-l
We obtain similar results for 0 < x _<_:-:.
The genera! results given in Eqs. (10) and
(11) can now be used to determine the densities
of the SPC error e, and d,. The properties of
the DFT indicate tg.t for a large block size M,
8, and Yp will be independent with LY uni formly
dgstrlbuud {0, 2n). Therefore, we assume that
np and my are statistically |ndependent and that
np 15 uniformly distributed (-n/N, w/N). The
densitlies of the equivalent quantization errors
L and dp for the SPC case are glven here. For
~w/N<x </,

N e lnl 0
f (x) = 5’”0 f(m) dn s/ F(m) dm

',"’ll
H -[x|
s 1 flm) g s f(m) am) (12)
x "N
and
f,00 = (1 ¢ 50l ¢ €7+ 01, x<0
=0 -2 ale e ftx- D1, 0. (13)

The density of mp is, In general, dependent upon

the statistics of the input signal. For a large

nunber of quantizstion levels N, we can assume

the density of my to be uniform (-w/N, w/N). The

resulting error densities are shown in Figure 1.

The result is confimed by computer simulation.
fle f(d)

Figure 1. Effective Error Densities.
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Individual quantization of 8p and Yp would yleld
uniformly distributed error densities (-7/N,
n/N) for the case described above. Therefore
we conclude that preparing 8p and Y, for digital
transmission by using the sequence ?"‘P) repre-
sents an important element in SPC performance.
Once we have evaluated the densities f(e)
and f(d) the calculation of the mean squared
quantization error for 8p and Yp Is straight
forward. We now present expressions for compyt-
ing this quantization error directly. The ex-
presslons are obtained by computing the Fourler
series expansion for the quantlzation error of
yp and using the result with Eqs. (2) and
(g). The effective arrors ep and dj, are

e = - z ; ('—‘)-r-‘-sln nN® _ cos nNY (14)
P N n=1 n P P
and
.2 (n?
dp H nEI —— cos nNOp sin nNYp . 1%)

The mean squared error expresslions for SPC are
obtained by assuming 8y and Yp are independent
and 8 is uniformly distributed (0, 27). Thus
the effective mean squared errors are

B =L 1 4 0 +€lcos 207 ) (16)
s S cos 2nKY,
and

2, 1 5
€(d°)} = L
P )?- n=|
We have investigated the sequence {{jp)} in
terms of the effective quantization of 8p and Yp.
Effective quantization error densities and mean
squared error expressions have been found. These

results will be used in the following section to
improve the SPC parformance.

1
-’-‘7 (V - E{cos ZnNYp}) . 7

t1l. PREQUANTIZED SPECTRAL PHASE CODING

We have stated at the outset that SPC is a
suboptimum technique for encoding discrete-time
signals. The results from [1] iIndicate that for
a fixed bit rate the number of magnitude quantiz-
ation levels Nj, and the number of phase levels
N2, must be related by

N, ® 2.596 N, (8

for optimum performance. In SPC, Yp ranges from
0 to m/2 and 8, ranges from 0 to 2r, Thus Yp has
only one-fourt?\ the effective quantization levels
of 85 at the recaiver. This suggests that an en-
coding tradeoff which decreases the MSE on Yp at
the expense of increasing the MSE on €5 could Im-
prove the SPC performance. The previous results
offer s method of obtaining the desired tradeoff.
The effactive errors ep and dp have been

shown to be fuactions of both np and my and thus
they are functions of both 8p and Yp. Suppose

95 has & density function that minimlzes the MSE
on Yp at the recsiver, 8y shaping the density
of 8, to be that of 85 before forming the se-
quence (Wp) wa can lowsr the MSE on T, at the

_that_same quantizer.

i AtEa et e ot AR R A A T

expense of increasing the MSE on 6_. We deter-
mine 8 as given below. Using Eq.P(15) we
obtain
- o nem
e «% ¢ ¢ LU
L4 NS nel me1 M

i
x E{cos nnop cos MOP sin nNYp sin mNYp}.

(19)

Thus the MSE on Yp assuming SPC statistics and a
large number of quantization levels N is
1

() + E{cos 2nN0 }) . (20)
N® n=l :! 2 P
From Eq. (20), we find that E(dp} Is minimlzed
for

2, - 1 5
E{dp}-—!- T

- n L.
OP-OP'K“*w. (21)

Applying these results, we propose the follow
ing coding schema called Prequantized Spectra!
Phase Coding (PQSPC). First obtain @p and Yp
as with SPC, 8p Is then Input into a unifom
quantizer w!th output levels X n/N + /2N for
K=0,),...,2N~1, This opsration ls‘cﬂlcd Pre-
quantizing. The quantizer output 8 is then
used to form the sequence {¥p)} snd  the rest
of the procedure is ldentical to SPC.

The techniques acquired in Section (| are
appliad to detemine the effective error den-
sities of PQSPC.

ACEY S ST EY (22)
and
€l af () ¢+ flx+D), -Lcuco
dx Mx 'lx N m-x—" (z,)

-fm(x)¢'m(x-£). O<x<wr.
The tradeoff accomplished by Prequantizing can
be seen by comparing the above densities to
those evaluated In Figure 1. The MSE and range
of dp are both reduced by a factor of two at
the expense of ep.

The normalized MSE performance of PQSPC is
presanted in Table 1 for a number of computer
simylations, The optimum unit varlance
Gaussian quantizer (0.G.Q.), the optimum uni-
form unit variance Gaussian quantizer (V.6.Q.),
and SPC performances are also presented in Table
1 for comparison. A!l the quantizers have 32
levals and the block size for SPC and PQSPC s
64, N(A) is the Gausslian density and X(A) is
the double-sided exponential density. The Input

densities are both zero mean with variance A,
In terms of normalized MSE, PQSPC offers an

improvement over SPC of 20.4% for the Gaussien
Input densities, and 47.5%3 for the exponential
densities. A desirable characteristic of SPC

is its relativa insensitivity to a change In
signal power or statistics. Table | demonstrates
that PQSPC shares thlis characteristic. ln the
unit variance Gaussian case where the optimum
quantization schems is glven, the MSE of PQSPC
is Just dowle that of the optimum MSE. Further,
for a signiticant change in the Input signal
power of statistics. PQSPC often out performs
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Table 1. A comparison of normalized MSE betwsen
the optimum unit varlance Gaussian
quantizer (0.6.Q.), the optimum uni-
form unit variance Gausslian quantizer
{u.6.Q.), SPC, and Prequantized SPC
(PQsPC).

Density 0.G.Q. U.6.Q SPC PQSPC
N(}) 2,48 €-3 3.82 E-3 7.39 E-3 5,88 E-3
N(2) 6.76 E-3 1.23 E-2 7.39 E-3 5.88 E-3
N(k) 3.63 €-3 S5.43 E-2 7.39 €-3 5.08 E-3
x(1) 1.8) E-2 2.65 E-2 2.78 E-2 1.k6 E-2
x(2) .00 €-2 6.77 E-2 2.78 €-2 1.46 E-2
X{4) 1.3 E=1 1.40 E-1 2.78 E-2 1.46 E-2

V. DISCUSSION

We began with an investigation of quantiza-
tion In SPC. We have found error densities and
MSE equations that completely characterize the
quantization. The results of this investigation
indicate that addltional quantization can lead
to Improved MSE performance. This Is an inter-
esting concept as it does not follow simply from
intuition. Using the concept of additional
quantization, a technique called Prequantized
Spectral Phase Coding Is introduced. It is shown
that PQSPC has the same properties as SPC with
substantially reduced MSE. Finally, computer
examples indicate that PQSPC Is often superior
to flxed quantization for nonstationary or large
dynamic range signals.
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APPENDIX

DERIVATION OF EQUIVALENT QUANTIZATION ERROR
EXPRESS 10MS

A1l quantization is to N levels uniformly
spaced from 0 to 2x with output levels K 2n/N
for K=0,1,...,M~1. Using Eqs. (2) and (7) we
write Yp In terms of the direct quantization
levels 5', and Yp.

- + + +
L "

- - ¥ -
me Opvnp b M (A1)

Since 59 and ¥ reprasent quantized valuss,

- ~ z"
DP + YP k—”- . k an Integer .
Thus, an equivalent way of expressing wp before
quantization Is
2n
+ *
WP - K T "P Mp (AZ)

Note that |np| < N, Impl < /N and thus

. an an
Tf_np#mp:T (A3)
The quantization of Vp Is now described.
@p-K%{- '-;:"pmp:i
- K 2m _2m  _2n .
T T T WEINH I
-k 2N 21 n 2%
KT u.‘."p"‘pi T {Ab)
Recalling K 2n/N = 3 + 79. we write Eq. (4) as
v =8 +7 -! < < '.'
%%t o “z p*Mp <
5 e 5 " T
- QP + T. T < np#mp : 'N
-Spoyp-r%"-. -&:npmpf_-z“"-. (A5)
Simllarly,
Vo =8 - Yp . g 'Nzi "™ =N
-f -7 - & 21 - .
[} Yp -2“-. N i"p .pf- N
-8 -yp*iﬁ, a:np-mpf_%—. (46)

P
Using Egs. (5) and (6) we write ep In tems of
Vp and Vp+it .
¢, =8, -8 -3 Wt ) - (a0
We examine three examples here for clarity and
then state the general results.
Case 1:

. b4 - - r
SMMp N 0 THEIMM N
Thus, WP - ep + Yp » *pm - eP = YP'
and
| Y ~ -~
- . * -
e, =8, -3 (6, + V) + (0 vp)l
8 - .
R
Case 2:
"zﬂli"p’"'pi"!l PRI SN
~ ~ - n a ~ >
Thus, U, =8+ -3, Voen = 8, = Yoo
and
| < 2n ~ ~
0 - = + - + -
o, =8, -3 [(ep v, O Yp)]
= n n
-Op op‘N-"p’N'
Case 3:
] 2n b n
Ninpmp:T N -iinp'mpii
a 3 2n A s ot
Thus, wp-@p*Yp*T, WP’"-OP-YP ,
and
-e -} 2 .
=9 -3 [(o ov 0 ¢ (e - Y))
-8 - 1' -1
Op Op i "p N
. There are five possible pairings of Wp and
wpm since




e
p- .~
3
4
b " . n
T - lnp+mp]>i =b[np mp|<N
and Inp-mp|>a = ]np#mp|<s

show that four of the ninre avallable palrings
are not allowed. The complete results for e
are given in Eq. (AB). The results for dp grven
in €q. (3) are obtained In a simitar manner.
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+
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A Note on Optimal Quantization

JAMES A. BUCKLEW anD NEAL C. GALLAGHER, JR.,
mempen, IEEE

Abstract—For s general closs of optimel quantizers the vartance of the
output Is lees than that of the input. Also the mean value is preserved by
the quantizing operaticn.

1. INTRODUCTION

J. Max {1] is generally credited with being the first to consider
the problem of designing & quantizer to minimize a distortion
measure given that the input statistics are known. Max derives
necessary conditions for minimizing the mean square quantiza-
tion error. These results are summarized in the following equa-
tions:

-f xf(x) dx/P(x,_, <x <x) )

LY |
Yityiaa

3 -x; 2)

where fix) is the probability density of the variable to be
quantized and P(x;_, <x < x;) is the probability that x lies in the
interval (x-n x;]. The y; are output levels and the x, are the
break points where an input value between x,_, and X, is
quantized to y,. Fleisher [2] later gave a suffncnenl condmon for
Max’s equauons to be the optimal set.

Typically, the above equations are intractable except for sim-
ple input densities, causing some researchers to derive approxi-
mate formulae for some common densities. Roe [3] derives an
approximation for the input interval endpoints assuming that the
widths of these intervals are small, i.e., the number of output
levels is large. Wood [4] derives a result which states, in effect,
that the variance of the output of a minimum mean-square error
quantizer should be less than the input variance. He also states
that the significance of his result is that the signal and noise are
dependent and that no pseudo-independence of the sort consid-
ered by Widrow [4] is possible.

However, Wood's derivation assumes the input density to be
five times differentiable and that the quantizer input intervals be
very small in order to truncate various Taylor series expansions.
Furthermore, the derived expression for the output variance 1s
dependent upon the input interval lengths and the input proba-
bility density function evaluated at the midpoints of these inter-
vals.

In this note we derive a generalization of Wood's results that
eliminates a number of his approximations and generalizes the
results to apply to more than just Max quantizers.

Manuscript received May 3, om mued Seplember S, I1978. This work
was supporied 1n part by the N dation under Grant
ENG-7682426 and in part the Air Force Office o‘ Scientific Research, Arr
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1. DEVELOPMENT

In the sequel it is assumed all random variables have finite
second moments.

Property 1: The mean value of the output of a minimum
mean-square error quantizer is equal to the mean value of the
input.

Proof: Consider (3):
P(x,_ .<x<x)y,-f xf(x) dx. A3)

x4
Sum both sides of the equation from j=1 to j=N. The result
follows. Property | allows us to assume the input density has
zero mean without loss of generality.

Property 2: The variance of the output of a minimum mean-
square error quantizer is always less than or equal to the input
vanance. Furthermore the mean-square quantization error is
given by the difference of the two.

Proof: Let us consider the mean-square error ¢ between the
quantizer's input and output:

e= 2[ (= x)f(x) dx @
1-) Xy
where xy and x, are the smallest and largest values taken on by
the input density and may take on the values — oo and + oo,
respectively. Expand‘mg the integrand and using the expression

zf.x’j(x)dx-lz'(xz}-a

im]

and (3), we find that

N
e=0}— 3 ylP(x,_,<x<x) 5)
iw)
where £ -} is the statistical expectation operator. But we nouce
that the last term on the right is the variance of the output, a
Since e > 0, this implies

o?>0?. (6)
Property 3: The signal and quantization noise are always

nonpositively correlated at the output of the minimum mean-
square error quantizer.

Proof: Consider an additive noise model for the quantizing
error; by Property 2,

E((x+n)}mE(x?}+2E(xn}+ E(n*)<E{x?). (7)

This umplies that £{xn} <0. Therefore, since x has mean zero,
the correlation coefficient must be nonpositive.

Remark: The above proofs depend only upon the output
levels being chosen as the conditional means of the input inter-
vals. Therefore, the same theorem applies 10 the maximum
entropy and equal interval quantizers when the output levels y,
are chosen as above. As indicated by an anonymous reviewer,

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. IT-25, NO. 3, MAY 1979

Property 2 may also be casily derived by averaging the condi-
tional meun square error over all the quantization intervals
where we condition on the event of being in one particular
quantization interval.

I1I. DiscussioN

Some interesting observations can be made when these results
are compared with the recent papers of Wise et al. [6] and Sripad
and Snyder {7]. In [6} it is shown that the rms bandwidth of any
(stationary) Gaussian process must always increase on passing
through a memoryless nonlinearity. By using the result of Wise
et al,, we can say that a Max quantizer operating on a stationary
Gaussian input increases the rms bandwidth while simulta-
neously reducing the variance.

In {7}, Sripad and Snyder develop necessary and sufficient
conditions for the quantization error to have a unuform distribu-
tion. In addition, they derive sufficient conditions for the signal
and quantization error to be uncorrelated given that the error is
uniformly distributed. Consider the case where the random
variable to be quantized is uniformly distributed. The Max
quantizer for this case is the equal step size quantizer. It is found
that the uniform input density satisfies the conditions for the
quantization error to be uniform but fails the conditions for
uncorrelatedness. The results contained herein confirm this re-
sult and in fact tell us the signal and noise are strictly negatively
correlated.
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SOME PROPERTIES OF UNIFORM STEP SIZE QUANTIZERS*

JAMES A. BUCKLEW and NEAL C. GALLAGHER, JR.
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West Lafayette, IN 47907
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ABSTRACT

This paper treats some properties of the optimal mean square error uni-
form quantizer. It is shown for the 0UQ that the mean square error (mse)
is given by the input variance minus the output variance. It is shown that

Lim —3€_ 5 4 with egquality when the support of the random variable is con-

New 82/12
tained in a finite interval. A class of probability densities which have
the above Limit greater than 1 is given. It is shown that

Lim N2 mse = (b-a)2I12 where (b-=a) is the measure of the smallest interval
N+®
that contains the support of the input random variable.

In many problems arising in the evaluation or design of a control or
communication system, it becomes necessary to predict the performance of a
uniform quantizer. Uniform quantizers are of interest because they are
usually the simplest quantizer structure to implement. The study of uni-
form gquantization is also of interest because many noise processes in phy-
sical systems may be considered to be the noise produced by a uniform quan-
tizing operation. Ffor example the final position of a stepping motor or
the Line drawn by the pen of a computer plotting device under a continuous
control may be considered to be corrupted by a uniform quantizing opera-
tion.

Because of th® importance of these quantizers several authors have con-
sidered various properties of them. Widrow (1] shows that under certain
conditions on the characteristic function of the input random variable, the
quantization noise is uniformly distributed. Gish and Pierce 2] show that
asymptotically the uniform quantizer is optimum in the sense of minimizing
the output entropy subject to a fixed mean square error value. Sripad and
Snyder [3] later extend Widrow's work to give a sufficient condition for
when the quantization error is uniform and uncorrelated with the input ran-
dom variable.

We will now state and prove some additional properties of these quantiz-
ers when we design them to minimize the mean square error. We may write
down the analytic expression for the quantizer characteristic g(x) as,

a x<q
gix) = a+(i+1)a g+iaix<g+(i+1) i=0,...,N-3 (&)
a+(N-1)a x> (N-2) a+q

where N is the number of output levels in the quantizer. We see that {f x
is less than q or greater than q + (N-2)A, then x is truncated to a and a +
(N-1) A respectively. An important parameter of interest is the width of
the nontruncation region which equals (N-2)a.

The quantizer characteristic g(x) must be optimized with respect to
three parameters, q which fixes its position along the x axis, a which

Presented at the Seventeenth Annual AllLenton Confenence on Commuid cationsd
Control and Compuwting, Octoben 10-12, 1979,
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fixes its position along the y axis, and 4 which spec.fies the step size of
the quantizer. Because it makes tittle sense to speak of minimizing the
mean square error of a random variable with infinite variance, we will al-

ways assume § xz f(x) dx < =,

Property 1

The optimum uniform quantizer preserves the mean of the input random
variable.

Proof:
Suppose g(x) is the optimum uniform quantizer. Then we must have
2 2 -
3 §x = glx) + &% f(x) dx l =g = O- €3]

This implies,

fx fx) = § glo) f(x). 3
{3
Property 2
For the optimum uniform quantizer we have that
a =q - ald.
Proot:

Suppose g{x) is the optimum uniform quantizer. Then we must have

3 2 .
= § atx - © - 0% f00 ax | 4 = 0. %)
= |3 -0l -2 -

- [ac § atx-02® £00 ax - & § 2xg(x-c) (0 dx] . = o )

N-3
9 . 2 cqtet(i+l)a 2 cqte
ac[iz::o e § ol 7T F00 dx + 2% FT° o

2
(a+(N-1) 8) Sq+c+(N-2)A

+

f(x) dx

-3 .
2[2 @r(ien ) §IET 08 g0 ax + 2 §IL° xt00 ax
i=0 ,

qret(N-2) A = 0. (6

+

(a+(N-1)8) § xf(x) dx

|c=0

N-3
[2: (a+(i+1)a)2 Cf(qrct(i+1)A) - f(q+c+ind]
i=0

+

a2 flqte) - (a*(N~1)A)2 flate+(N-2)4)




-3
- 2[ L (a*(i+1a) [Ca+e+(i+1a) flate+(i+1)a)
i=0

- (q*ctia) f(q+e+ia)) + alq+e) flg+e)

- (a*(N-1)4a) (g+ec*(N~2)3) flq+e+(N-2)4) |e=0 = Q. (7
Simplifying this expression we obtain
N-2
(a+2a=-2q) Y f(q+ia) = 0.
i=0
N-2
The solution Y. f(q+ia) = 0 is of no interest because without affecting
i=0

the mean square error, we may always arbitrarily set f(q+ia) = 0,i =
0,...,N-2. Hence a+2a-2q = 0 which is what we wish to prove.

]

Property 3

The mean square error of an optimum uniform quantizer is given by the
input variance minus the output variance.

Proof:
We again write the mean square error mse as
mse = E(xz} - 2 E{xg(x)} + E(g(x)z}. (8)

We wish to optimize this equation with respect to a. Using a = q-a/2 we
first obtain

N-3

r (q+(1’4%)A)2 (ariitha

E{xg(x)) s
i=0 aria

xf(x) dx

+

- q 3 -
(q=a/2) §3_ xf(x) dx + (q+(N=3)8) §qen-2ya XFOO dx (9
and
N-3

1y g2 carGiena
i2=:0 (a+Gie )" § s, f(x) dx

E(g(x)z}

42 ¢a S0 ("
+ @ FI 00 dx + @D Sq+(N-2)A
Now substitute Eq. (9) and Eq. (10) into Eq. (8); take the partial deriva-

tive with respect to A and set the result equal to zero. We find that

f(x) dx. (10

ECxg(x)) + qECQ()} = ECg(x)°} + QECx). (N

But E{g(x)) = E{x} for the optimum quantizer. Hence E{xg(x))} = E(g(x)z)
and we have for the mean square error mse

mse = E(xz) - E(g(x)z) (12
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which together with Property 1 finishes the proof.
]

Sripad and Snyder [3] show sufficient conditions for (x-g(x)) to be uni-
form and uncorrelated with x to be

.xczﬁﬂo = .x(gﬁﬂo 20 n=#1,£2,... a3

where ox(w) is the characteristic function of the input random variable «x.

Frequently in the analysis of a system corrupted by a uniform quantizing
operation the assumption is made that the quantization noise is uncorrelat-
ed (sometimes independence is assumed) with the input. The next property
demonstrates that this can't be done with the optimum uniform quantizer.

Property &

Suppose the input probability density is Riemann integrable. Then the
quantization noise can't be uncorrelated with the input for the optimum un-
iform quantizer.

Proof:
Without loss of generality assume E{X} = 0. Now suppose the converse to
the property. This implies

EC(x=g(x)Ix} = E{xz) - E{g(xIx)> = 0 (14

But from Property 3

E{xg(x)} = E(g(x)z} hence

2 s

ExY - ECQ(x)2) = 0

But again from Property 3, the Left hand side of Eq. (15) is the mean
square error which implies a contradiction. That a probability density
function is Riemann integrable necessarily implies that the mean square er-
ror for any finite number of output levels is greater than zero (i.e. f(x)
has no delta functions).

0]
We now state an obvious property which will be used 1in several subse-

quent proofs. The proof of property 5 follows from a simple application of
the Lebesgue dominated convergence theorem.

Property 5

The mean square error approaches zero for the optimal uniform quantizer
as the number of output levels approaches =,

Let T = Ca,bl be the smallest interval such that f: f(x) dx = 1. Note
that |al or |b| may be infinite.

Property 6

Suppose f(x) is Riemann integrable. Then for the optimum uniform quan-
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tizer, Lim (N=-2)a = b-a.
N+
Proof:

Suppose Lim (N-2)4 < b-a. This implies for N sufficiently large that we
N+
are always truncating some finite amount of probability mass which means
the mean square error can't go to zero which is a contradiction of the pre-
vious property. Hence we have the Lim (N-2)a > b-a.
N+
Let us suppose Lim (N-2)A > b-a. Note that this makes sense only if the
Neo

random variable is of finite support. Now for N lLarge enough there is no
truncation error. It is easy to show as will be done in the next property

that for a quantizer with no truncation error, Lim pse = 1 for a Riemann

N+= 4 /12
integrable density function. So for N sufficiently large (N-2)a > C > b-a
< », Then

1 = Lim —E—mse < Lim TJL—EOF
N+w 2°/12 = Neo C /12(N-2)
2 ¢2
Lim (N-2)" mse > 2> (16)

Nem

Consider now a suboptimal quantizer whose input intervals are given by di-
viding up the interval 1 into N-2 equal subintervals. Denote the mean
square error or this guantizer as mseq g’ and its step size A, = (b~

S
a)/(N-2). This quantizer has no truncation error and hence

mse llsesuB

1 = Llim = Ltim or
New Asz/12 New (b=a)2/12(N-2)°

2 2
B8 ¢ L < Lin - mse an

N+

. 2 -
;1: (N-2) msec s 73

which is a contradiction since we have found a suboptimal quantizer with a
better mean square error than the optimal.

Q
Property 7

Suppose the density function is Riemann integrable and (b-a) < =, Then
for the optimal uniform quantizer we have

mse

Lim = 1,

Nea 5 /12

Proof:

from property 6 we know that Lim (N-2) Ao = b~a < = yhere Ao is the op-

N+o»

timum 4. We may design a suboptimum quantizer by dividing the interval 1
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(smallest interval such that S: f(x) dx = 1) into N-2 equal subintervals

and use these subintervals as the breakpoints for our quantizer. We will
denote the mean square error associated with this quantizer as msec s and

the step size A g (b-a)/(N-2).

S

Define

M, 2 supf (x)
17 Xetqtit) q#ti+1a)

and

m, = ® f(x) -
Xe(q+ia) q+(i+1)a)

Then since there is no truncation error for the suboptimal quantizer we
have

N-3 Sq+(i+1)As 1 )
iz=:0 m, qria (x-(q+(ﬂ-2-)As)) dx < mseg o
and
N-3 Qi+
s 1 2
mseg o g_iz% M, Sq+iAs (X=Cq+Cirz) a0 dx (18
or
Ag N-3 Ag N-3
El i§0 mbg < mseg o < 7% 420 L a9
Ng msesua Ng
Lim m.a. < Llim - < Lim M.2 20
New i20 ' 5~ Now 8g/12 T New §20 s

Now since f(x) is a density function and is Riemann integrable

Ni.'» N‘E
Lim m.A, = Lim Mm.a, =1
New 320 ' °  Now §30 1 O
implies
mse
Lim 28 = g, 21)
Noo As/12
s (N-2) 4 :‘12("'2”3
Now limr=lim T = Galhi-D32 =1, whizh gives automatically
New “0 Now 0 Now 0
2

A
Lim —;- =1, Now for any quantizer whose nontruncation region covers the
Non A

0

. | 4
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,;f””’:::::::-of the Riemann integrable density function in the Limit as N ap-

proaches infinity, we may show as above that Llim Bse > 1. This bound is
Nem A" /12

arrived at by ignoring the truncation error and is true for finite or in-

finite support density functions. We now have the following string,

2
mse mse A /12
tin =18 = Lin (38 (5,
New A°/12 Noow As/12 A0/12
msesuB A§/12
= (Lim ) (Lim -1?--0 =1 (22)
Neo A_/12 Nea 5./12
S 0
but
mse mse
1= Uin =28 5 Lim —gililat 5 4 (23)
N+ A0/12 N+w A0/12
mse
or Lim OPTIMAL =1
which is what we wanted to prove.
Q1

Zador [4] shows that if f(x) is Riemann integrable and E{xz*s} < « for

same § > O; then we have for the optimal nonuniform quantizer

Lim N mse = ||f||1/3/12

N+o

where ||f||1/3 is the L norm. This result shows that for the nonuniform

1/3
quantizer, the mean ctsquare error decreases on the order of 1/N2 for large
N. 1Is there a similar property for the optimum uniform quantizer? We now
give our next property.

Property 8
Suppose f(x) is Riemann integrable. Then for the optimum uniform quan-
' 2
tizer lim N2 mse = 597%1-.
Neo
Proof:

2y ¢
Suppose (b-a) = . Then 1 < Lim mse . i —SN=2) mse
New 25712 Nea (N-2)5p°712

_ Lin_(N-2)mse
Lim N2a2/12

(24)

but (N-Z)z Az + » which implies lim (N-Z)2 mse + =,

Noo

If b~a < e then Llim 22— =21 or lin(N-Z)zmse = Lin szse =

Neo 5 /12 Neoo Neom

Ve
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. 22
L‘m(?ZZ) A - (b1;) which finishes the proof.
Discussion

We should note that not everyone employs the same definition of optimum
uniform quantizer that we have used. For example Pearlman and Senge (5]
have published tables of the optimal uniform Rayleigh quantizer. For their
computations, they add the constraints a = 0 and that q = A/2.

It is interesting to note that properties 1 and 3 are also shared by the
optimal noruniform quantizer as shown in [61. As a further consequence of
these two properties we find that for the N=2 case, the optimum uniform
quantizer and the optimum nonuniform quantizer are identical.

Property 7 is one of the more interesting properties proved in this pa-
per. A common approximation to the mean square error of a uniform quantiz-

er has been A2/12. Consider the class of density functions given by

A1+ %)
fix) = -~ o< x €@,
A+ |x>*8

+ te
We easily see that & = Sup {e: f x2 € fx) dx < =) By straightforward
minimization techniques one can show for this class of densities that

Lim -DSe_ _ 4, 2,
N+ A /12 §

Property 8 is of interest because it sets forth a basic difference
between uniform and nonuniform quantizers. For the nonuniform quantizer we

can expect the mean square error to be of the order 1IN2. We can expect
this rate of convergence to zero for the uniform quantizer only if the pro-
bability density is of finite support. We may show for the optimal uniform

Gaussian quantjizer that the error is the same or larger than n N/Nz.
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ABSTRACT

This paper is concerned with the determination of regression functions
from only a partial characterization of the joint distribution. It is
shown that statistical information consisting of various moments and joint
moments is sufficlent to characterize a regression function. An applica-
tion to regression functionals is also considered.

I. INTRODUCTION

Let X and Y be random variables with Y integrable, i.e. E{|Y|} < =,
and consider the regression function of Y on X,

m(x) = E{Y|X=x}.

As is well known, m(:) is a Borel measurable function, and it frequently
arises in engineering applications. For example, if Y is a second order
random variable, then the minimum mean squared error estimate of Y in
terms of X is given by m(X) [1, pp. 77-78].

In some cases m(.) has a particularly simple form. For example, if
X and Y are jointly Caussian with respective means L and My» respective

variances °x2 > 0 and oYz. and correlation coefficient p, then

m(x) = ax + b, (1)

where a = (oY/ox)p and b = m, - am,. However, in the case of jointly
Gaussian random variables, Mys Mys Oys Oys and p completely determine the

bivariate distribution of the two random variables.

In more general cases, the question arises as to how much information
about the bivariate distribution is required to determine the regression
function. If X and Y are two second order random variables that are
separable in the sense of Nuttall [2], then the regression function m(.)
has the form given by (1). However, knowing that two second order random
variables are separable in the sense of Nuttall, and knowing the means,
variances, and the correlation coefficient is not sufficient to determine
the bivariate distribution of the two random variables. Notice that any
two random variables whose bivariate characteristic function is ellipti-
cally symmetric are separable in the sense of Nuttall [3].

As we have seen, there exists a class of joint distributions such that
the regression function can be determined knowing that the two random
variables belong to that class and also knowing means, variances, and the
correlation coefficient. However, it might seem reasonable to conjecture
that in more general cases, the regular conditional distribution [4] of Y
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given X=x 18 required. Although the regular conditional distribution of
Y given X=x is sufficient to determine m(x), in the next section we will
see that it 18 never necessary.

In this paper we will be concerned with statistical information such
that there can be only one regression function consistent with the given
statistical information. In the next section we consider the regression
of Y on a random variable and then on a random vector. Then in the
following section we consider the regression functional, that is, the
regression of Y on a random process,

II. DEVELOPMENT

Let Y be a second order random variable, let X be a random variable
with compact support, and let m(:) be given by Eq. (1). Define the measure
U on the Borel sets of R by

U(A) - P(xeA) I
and let Ilo“ denote the Lz(u) norm. We will say that a polynomial has

max degree N if the degree of the polynomial is no greater than N. We
note that for any ¢ > 0, if N is sufficiently large, there exists a poly-
nomial of max degree N PN(x) such that

” m - PN” < €. (2)
That is, there exists a continuous function h(:) such that [5]
lm-nl| <e/2,

and by the Weilerstrass Theorem there exists a polynomial P
N with N sufficiently large such that

N of max degree

b - PNII <el2.

Thus Eq. (2) follows by the triangle inequality. Hence there exists a
sequence of polynomials PN(x) such that

PN(x) + m(x) in LZ(“) .

Let QN(x) be the polynomial of max degree N that is closer to m(x) (in
Lz(u)) than any other polynomial of max degree N. We note in passing that
QN(x) is uniquely defined a.e. {u] by the Projection Theorem. That is,
there may exist more than one representation of QN(x) (1.e. with different
coefficients) but they are all equal a.e. [u]. From the preceding
observations, we have that

QN(x) + o(x) in L2[u] .

Express the polynomial QN(x) as
N

Qy(x) = E aJ(N) < .
370

It follows from the Projection Theorem that the a
from the relation

(N) can be determined

3
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T

E ‘[m(X) - :E:a ORS xkl =0, k=0,1,2 N

3 . » 1y 2,044, .
l j=0 ‘

This 1is equivalent to

N
+
e(x5Y) = a, () 3™, k=0,1, 2,..., N. (3)
3=0
Thus we have seen that from a knowledge of
E{Xk} , k=12, ...
and
k
E{Yx'}) ,k=0,1, 2, ... ,
we can construct a sequence of polynomials QN(x) that converge in Lz(u) to
m(x).
Now let X be an arbitrary random variable. Let g be an invertible
Borel measurable function whose range is bounded. Define the random

variable g as X = g(X), and the measure u on the Borel sets of R by
u(A) = P(X€A). From the above discussion, we see that

m(x) = E{Y|X = x}
is determined a.e.[u] by the quantities
EX), k=1, 2, ... (4)

and

E{Yyx’} , k=0,1,2, ... . 5)
Let 6N(x) denote the polynomial of max degree N constructed in the
preceding fashion. Then

Q) + m(x)  in L,(u) .

Notice that m(x) = ;[g(x)]. From a change of variables result [6, p. 182],
we have that

S 100 - 2001? sean - J [Qyle(0] - m(x)1% u(ax) .
g(R) i R
Therefore, QN[g(x)] + m(x) in LZ(u)'

‘Now we will remove the restriction that Y be second order. Assume
that Y is an integrable random variable and let

y if |y| <k
G, (y) =
04if |y| > k .

Then Gk(Y) is a second order random variable and [1, p. 23]

z{ck(v)lx-x} + E{Y|X=x} a.e.lu] .

+

Since \Gk(Y)-YI < Y] and Y| 1s integrable, we have that E{Gk(Y)Ix-x}
m(x) in Ll(u) by the dominated convergence theorem [6, pp. 124-125]}.
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Thus from a knowledge of the quantities in Eqs. (4) and (5) we can
derive a sequence of estimates for E{Gk(Y)Ixsx} which converges in Lz(u),

and consequently 1in Ll(u) (see, for example, [7]). Also, E{Gk(Y)lx-x}
converges to E{Y|X=x} in Ll(u). Thus, by a straightforward diagonalization
procedure, we can derive a sequence of estimates which converges in Ll(u)
to m(x). These results are summarized in the following theorem.

Theorem 1: Let Y be an integrable random variable, let X be an arbitrary
random variable, and let g be an invertible Borel measurable function

mapping the reals into a bounded set. Then the regression function m is
determined a.e.{u] by the quantities

E((e)1¥} , k=1, 2, ...
and
EY(g)I*}, k=0, 1, 2, ...

Consider for the moment the case where X and Y are independent. In
this case a solution to Eq. (3) is given by

aO(N) = E{Y}
a, (M) =0,3>0,

and we get that m(x) = E{Y].
Now consider the following two different bivariate density functions:

2
exp{— —(m}—)_-J 1[0,1] (X)

fl(x.y) = 3

2n © 20

£2009) = X o 1,00011 Y 10,1

where o > 0, p € (-1,1), and I denotes the indicator function. Assuming
that the density of (X,Y) is given by f,, we find that

1’
k 1
E{X"} K+l
k - P
E{YX"} P

In this case, for N > 1, a solution to Eq. (3) is given by
a;(N) =p (6)

(Ny =0, 341, (7)

a

3

and we conclude that
m(x) = px . (8)

I1f we assume that the density of (X,Y) is given by fz. we find that

k 2
E{(X"} K+2
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(X} = S5
In this case, for N > 1, Eqs. (6) and (7) still satisfy Eq. (3), and the
regression function 1s once again given by Eq. (8). Thus, in this example,
the two pairs of marginal densities are not the same, the conditional
densities of Y given X=x are not the same, and the moment sequences are
not the same; however, the moment sequences are sufficient to characterize
the conditional expectations, which are identical. Numerous other similar
examples may easily be constructed.

Now we will consider the regression of Y upon a set of random

variables. Let X be an arbitrary random vector taking values in Rn. and

let u be defined on the Borel sets of R" by
u(B) = P(X€B) .

Lemma 1: TIf p has compact support, then the class of all polynomials is
dense in Lz(u).

Proof: Let q be an arbitrary element in Lz(u). For any ¢ > 0, there
exists [S5] a function h: R" + R which is continuous and has compact
support such that

la-h || < e/2 .

By the Stone-Weierstrass Theorem [8] there exists a polynomial p in n
variables such that

fh-pll <e/2,
and thus by the triangle inequality

lp-all <e .
QED

We recall that the degree of a monomial in n variables is the sum of
the powers of the variables, and the degree of a polynomial is the degree
of the monomial having the largest degree over all the monomials in the
polynomial with nonzero coefficients. There are

n+d-1)

C(n,d) = ( d

monomials of degree d in n variables [9].
Assume that Y is a second order random variable, and define m(x) by

Eq. (1), where x is now an element of R" . Assume that ¥ has compact
support. Let QN(x) be the polynomial of max degree N which is closer, in

the Lz(") norm, to m(x) than any other polynomial of max degree N.

Consider a monomial in n variables of degree d. There will be
C(n,d) of them. Order them lexicographically by the powers of the
components of x, and let mjd(x) denote the j-th monomial of degree d.

Then QN(x) can be expressed as

—. PP AU
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N C(n,d)
Q(x) = z E a5q(Mmy, (x) .
d=0 j=1
It follows from the Projection Theorem that the coefficients ajd(N) are
given by the solution to the following set of equations:
N C(n,d)
Y =
E(¥m,, 00} = 57 37 a0 Em, (X) m, (0}, 9)
d=0 j=1

k=0,1, ..., Nand 1 =1, ..., C(n,k). If the coefficients ajd(N)

satisfy Eq. (9), then it follows from Lemma 1 that
QN(x) + m(x) in Lz(”)

Now we remove the assumption that X has compact support and let X be
an arbitrary random vector taking values in R". Let g be an invertible
Borel measurable function mapping R" into a bounded subset of R" , and
let X = g(X). We see that

m(x) = E{Y|X=x}
is determined a.e.[u], where u(aA) = u[g-l(A)], by the quantities

E{n, ,(X)}

mjd

and

E{ijd(X)}

for d =0,1, 2, ... and j =1, ..., C(n,d). Let QN(x) be the polynomial

of max degree N determined in the preceding fashion. Then, similar to the
development of Theorem 1, we can employ a change of variables result
{6, p. 182] to conclude that

6N[g(x)] + m(x) in Lz(“) .

A chopping argument as in the development of Theorem 1 allows us to remove
the second order restriction on Y. Then a straightforward diagonalization
procedure results in a sequence of estimates which converges to m(x) in
Ll(u). This result is summarized in the following theorem.

Theorem 2: Let Y be an integrable random variable, let X be an arbitrary
random vector taking values in If‘, and let g be an invertible Borel

measurable function mapping R" into a bounded subset of R, Then the
regression function m is determined a.e.[u] by the quantities

E{mjdls(X)]} and E(ijd[g(X)]}

ford =0,1, 2, ... and j =1, ..., C(n,d).




Y

ITI. REGRESSION FUNCTIONALS

As before, assume that Y is an integrable random variable, but now
let T be an infinite subset of R and let {X(t), t€ T} be a random
process. Let S denote the space of all extended real valued functions
defined on T, and let ¥8(S) denote the o-~algebra on S generated by the

class of all cylinders in S. Let & denote the Borel sets of R. Then
the regression functional

m{x(t), t€eT) = E{(Y|X(t) = x(t), t €T}

is a measurable function from (S, #B(S)) to (R ,#B) (see, for example,
{10]).
Let u be the measure induced on #B(S) by {X(t), t €T}. That is, for

any cylinder C in S, u(C) = P({X(t), t €T} €C), and u is extended to HB(S)
via Kolmogorov's Theorem (see, for example, [11]).

It follows from [1, pp. 21, 604] that there exists a countable subset
of T, say T = {tl,tz,...}, depending on the random variable Y, such that

E{Y|X(t) = x(t), te T} = E{Y|X(t) = x(t), t €T} a.e.[u] .

Let
M = E(Y|X(t), t €T},
M= E{le(tl), cees X(t)),
F= o{X(t), t €T},

and

.wn = o{X(tl), cees x(tn)}.

Then from the properties of iterated conditional expectations {1, p. 37],
it follows that

E{Mm_ll.?‘"} -M wpl ,

and hence {Mn’ F,n2 1} is a martingale. It follows from [1, p. 332]
that M+ M wpl. Since E{IMn|} < E{|Y]} < », it follows from a martingale
convergence theorem [1l, p. 319) due to Doob that E{IMn-MI} + 0. This is
equivalent to

E(Y|X(e,) = x(t,), 1=1,...,n} > E(¥Y]X(t) = x(t), t € T}

in L (u). Notice that Theorem 2 is applicable to E{YIX(ti) = x(t),

i=1,... .1}. Thus a straightforward diagonalization procedure results in
a sequence of estimates which converges to m[x(t), t € T] in Ll(u). This

result 1is summarized in the following theorem.

Theorem 3: Let Y be an integrable random variable and let {X(t), t €T}
be a random process. Let {gn. n=1,2,...} be a sequence of functions

where g, 1s an invertible Borel meaSurable function from R" to a bounded

subset of R" . Assume that for all positive integers n and for all sets
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of n points in T, say t;, ..., t,, the quantities

and

E{mjd(sn[x(tl). N X(tn)])}

E{ijd(gn[x(tl). ceey X(tn)])}

for d = 0,1, 2, ... and j =1, ..., C(n,d) are known. Then up to u
equivalence, there is only one possible regression functional m[x(t), t € T]
= B{Y|X(t) = x(t), t € T}.

ACKNOWLEDGEMENT

This research was supported by the Air Force Office of Scientific

Research, Air Force Systems Command, USAF, under Grants AFOSR-76-3062
and AFOSR-78-3605.

10.

11.

Py

REFERENCES

J. L. Doob, Stochastic Processes, Wiley, New York, 1953.

A. H. Nuttall, "Theory and Application of the Separable Class of
Random Processes,” Technical Report 343, Research Laboratory of
Electronics, Massachusetts Institute of Technology, May 26, 1958.

D. K. McGraw and J. F. Wagner, "Elliptically Symmetric Distributions,"
IEEE Trans. Inform. Th., Vol. IT-14, pp. 110-120, January 1968.

L. Breiman, Probability, p. 79, Addison-Wesley, Reading, Mass., 1968,

W. Rudin, Real and Complex Analysis, p. 71, McGraw-Hill, New York,
1974,

N. Dunford and J. T. Schwartz, Linear Operators Part I: General
Theory, Interscience, New York, 1957.

M. Loéve, Probability Theory, p. 164, Van Nostrand, New York, 1963.

J. Dieudonne, Foundations of Modern Analysis, p. 139, Academic
Press, New York, 1969.

R. W. Brockett, "Lie Algebras and Lie Groups in Control Theory." ia
Geometric Methods in System Theory, D. Q. Mayne and R. W. Brockett,
eds., Reidel, The Netherlands, 1973, pp. 43-82.

1. I. Gihman and A. V. Skorohod, The Theory of Stochastic Processes I,
p. 34, Springer-Verlag, New York, 1974,

P. Billingsley, Probability and Measure, p. 433, Wiley, New York,
1979.




IERE TRANSACTIONS ON INFORMATION THEORY, VOL. 1T-25, NO. 5, serTemsen 1979 17

Quantization Schemes for Bivariate
Gaussian Random Variables

JAMES A. BUCKLEW anp NEAL C. GALLAGHER, JR., MEMBER, IELE

Abstract—The problem of quastiziag two-dimensional Caussian random
variables is coasidered. It is shown thet, for all but a finite number of
cases, a polar representatioa gives a smaller mean square quantization
ervor than a Cartesian represesiation. Applicatioas of the results to a
transform coding scheme known as spectral phase codisg are discussed.

I. INTRODUCTION

ONSIDER a two-dimensional Gaussian random

variable X with independent components. For many
applications in signal processing and digital communica-
tions 1t is necessary (o represent this quantity by a finite
set of values. One possible representation of X is in
Cartesian coordinates, obtained by individually quanuz-
ing the two rectangular components of X. An alternative
representation, in polar coordinates, is obtained by quan-
uzing the magnitude and phase angle of X.

In [1] experimental data are put forward to show that,
in all of the cases treated, polar formatting is better than
rectangular. The purpose of this paper 1s to give a mure
rigorous treatment of the problem and to ascertain which
of the representations leads to a smaller mean square
quantization error.

In the first section we will derive the exact error expres-
ston for the polar format. The second and third sections
deal with computer simulations of the expression and
compare the polar and rectangular formats. It is shown
that, in almost all cases, the polar format gives a smaller
quantization error.

If the polar format is to be used, the question arises as
to the best ratio of the number of phase quantizer levels to
the number of magnitude quantizer levels. Pearlman (2]
used distortion rate theory to derive a bound for this
expression. In the fourth section we derive an asymptotic
expression that agrees with the Pearlman result and per-
form computer simulations showing the validity of this
bound.

In the fifth section we apply the above results to a
transform coding scheme, spectral phase coding (SPC).
Theoretical arguments are given for the observed robust-
ness of SPC, and an exact error expression is derived.
Computer simulations are then made demonstrating the
robustness of SPC.

Manuscript received November 18, 1977; revised December 18, 1978.
This work was supported by the Air Furce Office of Scientific Research,
Air System Command. USAF, under grant AFOSR-78-3605.

The authors ure with the Schoul of Electrical Enginecering, Purdue
University, West Lafayetie, IN 47907,

Il. DEVELOPMENT

Consider the mean square quantization error E, of a
polar format representation:

Ne N ¢ re,
E,-EI E fr'_Ifa‘_||,exp(,~o)—b,exp(j4)|=
JAr)drde
2n '
where N, and N, are the number of levels in the phase
and magnitude quantizers, respectively. The b, and d are
the output levels of the magnitude and phase quantizers
corresponding to input levels lying in the intervals
(a;,_,a] and (¢,_\.c). respectively. The function f(r) 1s
the input density of the magnitude which is Rayleigh
distributed and independent of the random phase € which
is uniformly distributed over { — m, 7).
After squaring out the integrand and integrating over 4
from ¢,_, 10 ¢,, we obtain

(n

’

Ny N,
E=23 2 f‘4 [(~¢_)[r?+b2) - 2rb[sin(c,- d))

J=1 =1"a ,

: d
~sin(e, ., - 4)) 2L (3
Setting 3£, /dd, =0 leads to the equations

"

G=d= g =dc | (3a)
27

6, =C = —, (3b)
(Y el N,

for jm1,-- - N,. It should be noted that these are simply
the equations for a uniform quantizer. Consequently. the
expression for mean square error becomes

N,
E=3 [° [P+b2-2mbsinc(1/N) ]| fir)dr, (4)

r=1"d

where sinc(-)=sinm(-)/7(:). A differentiation with re-
spect to b, yields the optimum b, as

“ rf(r)dr
b, =sinc(1/ Ny) —g—. (5)
[~ noar

o,

0018-9448 /79,/0900-0537500.75 11979 1EEE
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Substituting this value back into (4), we find

U rf(r)dr]
E,=r - 2 sinc3(1/ N,) —ig—=- (6)
im| f Sfr)dr

L

where the upper bar indicates the statistical expectation
operator. Let E(N,.r) denote the mean square quantiza-
tion error produced by an optimal. one-dimensional, N,
output level, Rayleigh quantizer. It is shown in [3] that
E(N,,r) is given by the difference between the variance of
the quantizer input and the variance of the vutput. Hence
E(N,.r) may be written as

BN -3 b"[ [ fmdr] (1)

where the {g;} are the quantizer input interval endpoints
and the (b} are the quantizer output levels. Max [4]
shows that the (b;} and {a;} satisfy

o= b +b,,

2 (8a)
f rf(r)dr
b= (8b)
f f(r)dr
These equations may be written as
fa: rf(r)dr oot rf(r)dr
S S : (9)
2[ frydr 2] frydr
Minimizing (4) with respect to the g, yields
b+b,,
(10)

U= Zsinc(1/N,)
and substituting (5) into the above gives

[arf(r) j:'“rf(r)dr
2f j(r)dr 2] "Nrydr

(1)

which is identical to (9). Fleisher {5] shows that Max's
conditions (i.c., (8a) and (8b)) are necessary and sufficient
for the optimality of the Rayleigh quanuzer. Thus we are
assured that the solutions to (11) are unique, leading us to
the conclusion that

a=a.
The polar format error expression then becomes
E, =sinc’(1/N)) E(N,.r) + (1 =sincl(1/N,)) r.  (12)

If we assume bit rate limited signal transmission, then
we must constrain the product of N, and N, to be less
than or equal to some constant, let us say N. To compare
the rectangular and polar formats, it 1s assumed that the
product of N, and N, the number of output levels of the
rectangular format quantizers, must also equal N. By use
of symmetry arguments it may be shown that, for optimal

rectangular format operation, N, must equal N,. There-
fore,

Ne=N=N'2 (13)

Let E(N,.g) denote the mean square quantization error
produced by an optimal N, output level Gaussian quan-
tizer. The rectangular format error £, is given by

E...=2E(N,.g)=2E(VN, g). (14)
The problem is now to compare (12) with (14).

[1l. Exact COMPUTER SIMULATION

In this section we make use of Max's [4] tabulated
results for E(N,.g). Max gives values of this function from
N,=1 to N,=36. We duplicate Max's work for the
Rayleigh quantizer and obtain values for E(N,.r). Using
an exhaustive search, we compute the smallest values of
error obtainable for (12) and (14) for values of N from |
to 2000. For all of these cases, there are only 31 values of
N for which the rectangular format 1s better. These values

TABLE |
VALUES OF N WHERE RECTANGULAR FORMAT IS SUPERIOR TO
PoLar ForMat

Basrd upon exact expressions 8ased upon appromimate expressiors

1,2, 3, 4
[ 6
3 B
k) k]
12 12
3 13, 3§
16 16
17 1?7
20 29
21 bal
25 e, 25
26 26, 27, 28, 1, 0, N, 32
3 ¥
36 3
3 3?7
18 38
h2 h2
w 43, b, U8
Iy W
50 50
St 51
56 56
57 57
58 58
4] 59
5] 6)
A 64, 65, 66, 67
n 72
" 73
I T, B, 82, 83, o, A9
199
101
o, 1, N2, 1y
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TABLE 1l
A TABULATION OF THE RELATIVE ERFICIENCY n=(E, ~ E )/ E, OF POLAR QUANTIZATION OVER THAT OF
RECTANGULAR QUANTIZATION, 1HE Best NUMBLR OF MAGNITUDE LEVELS N,, AND THE
BesT NUMBER OF RECTANGULAR FORMAT LEVELS N,, AS A FUNCTION OF N

N v h N H 4 N N ] r N N
4 ® v x T n

1 000 1 1 S 3.801 & 7 1, 578 S 10
2 -.001 1 3 52 -3.5%46 4 ? 102 4,626 6 10
3 ~28.572 1 1 54 3.5 & 7 103 -6, 626 & 10
4 -.005 1 ¢ 54 -.990 6 104 4,426 & 10
5 -16.226 1 2 S -3.4%9 5 6 105 6,426 6 10
¢ 2,468 1 2 56 1.613 4 4 108 -6.424 & 10
7 -%.086 1 ¢ 52 1.613% & ? 107 4. 426 6 10
8 3.325 2 2 b1.] 1.613 & 7 108 “6.489 6 9
9 22,679 1 3 54 1,613 4 ? 109 ~6.469 6 9
16 -.703 2 3 60 -5.316 % 14 110 ~1,55% 6 10
M -.03 2 H 61 =5.116 5 ? m “1.55% 6 10
12 620 2 3 T4 -5.316 5 ? 12 -1.55¢ 6 10
13 L6202 3 65 5,655 5 ? 113 -1,55 6 10
14 -15.048 2 3 13 6,39 ¢ 8 114 -6.812 6 10
15 -1,006 2 3 69 -1.%4 5 ] 115 -6.812 6 10
14 1936 2 4 13 1,546 5 8 116 -6.812 ¢ 10
17 1,938 2 A 6/ =1.%4 5 3 117 -6.206 6 9
18 ~6.640 2 4 o8 =1.5%¢ S 8 18 -6.206 6 9
19 -8.640 2 4 69 -1.5%46 S 8 119 -8.422 ? 9
20 6,377 2 4 n -6.538 5 7 120 -4.120 6 10
N 1,220 3 4 4 -6.538 5 7 121 -1.919 6 1"
ve _e60 2 “ 72 689 5 8 122 -1.919 6 1"
23 ~.680 2 4 3 689 5 3 123 1,919 & 1M
26 -2,631 3 “ 4] .689 5 8 124 -1.919 & 1
2 6.695 3 5 IS -6.442 S 8 125 -“1.919 ¢ 1"
26 6,69) 3 Y 6 -6,462 9 8 126 -6.151 6 1"
er -5.911 3 < 144 “h . 462 5 8 127 -6.151 ¢ n
o8 -5.911 3 ., " =6.44¢ S 8 128 =6.151 & n
29 5,911 3 . 1y ~b.4k2 S . 129 «6.151 § "
30 -1.022 3 ; 80 -4.180 S 8 130 -2,146 & 10
31 -1.02¢ 5 -3 ~.92 5 9 131 -2.,146 & 10
12 -1.022 3 ) 8¢ s s 9 132 -1,865 6 n
13 ~9.643 3 5 83 -.972 S 9 133 -6,015 ? n"
34 -9.663 3 5 86 -2.232 6 9 134 -~6.015 7 1"
35 1.1 3 S 85 ~6.499 5 9 135 4,015 7 n
36 1.388 3 6 86 ~6.499 S 9 136 -4.015 7 1
37 1,388 3 6 8/ -6.499 5 9 137 -6.015 7 1t
38 1,388 % 6 3.1 -2.789 5 8 138 -5.298 & 7"
39 ~4.288 3 I 89 -2,789 S 8 139 -5.298 6 11
40 ~3.440 & 5 90 1,765 5 9 140 -8,395 7 10
&1 ~3.640 & 5 9 -1.765 S 9 161 -8,395 7 10
€2 3.885 3% [ 92 -1.765 5 9 162 -8.395 7 10
43 5,885 3 6 93 =1.765 5 9 143 -2,599 7 "
b -2.196 & & 9% -1.765 S5 9 144 -.750 7 12
1) -2.196 4 [ 95 -6.090 5 9 145 -.750 7 12
“o -2.196 & IS 96 -8.522 & 9 148 =750 7 12
&7 2.9 & [ 97 -83,522 6 9 147 -5.660 7 12
48 =1.940 & 6 98 -8.522 ¢ 9 148 -5.680 7 12
9 3,801 4 7 99 ~.593 9 149 -5.660 7 12
50 3.801 4 7 100 578 8 10 150 -5.660 7?7 12

for N correspond in general to regions where N is a
perfect square. Apparently, for values of N greater than
101, polar formatting is always the better of the two
methods. The left column of Table I contains a listing of
the 3! values of N for which rectangular format gives
smaller error. Table Il gives an indication of the relative
effictency of polar and rectangular formatiing by tabulat-
ing (E, - E,)/ E, for values of N from 1 to 150. Also in
Table 11 may be found the best number of magnitude
levels N, (with Ny = greatest integer less than N/ N,) and
the best number of rectangular format levels N (with
N, = greatest integer less than N/ N ) for each value of ¥
from | to 150. For values of N larger than 2000, we may
make use of approximation methods.

IV. APPROXIMATE COMPUTER SIMULATION

Woud [6] describes a technique whereby one can ap-
proximate the mean square error of an optumal quantizer
for large N. He then gives an expression for the error of

an N level Gaussian quantizer which agrees to within
about one percent with the actual computed mean square
error given by Max (4]. This error expression is

273N, 6?
(N, +0853)"

Using Wood's approximations, we obtain for the
Rayleigh density a similar error expression which also

agrees well with the actual computed error. This error
expression is

0.9287N,4?
0596+ N,)*

By use of these approximate error expressions, we again
find the values of N where rectangular format gives
smaller error than polar format. Computer simulations are
run up to a value of N=10° We find that for values of ¥
greater than 113, polar format is always better.

Table | summarizes the results of the last two sections.
In the first column we find the values of N for which the

E(N, r)= (16)

PRy Mo cnnlie st e o
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Fig. 1. Ratio of optimum number of phase quantizer levels to magnitude quantizer levels as a function of N.

Cartesian format error is smaller than the polar format
error according to the exact error expressions. In the
second column we find the values of N for which rectan-
gular format is better than polar format according to the
approximate error expressions. It can be seen that, in
general, the approximate expressions are more pessimistic
than the exact quantities.

V.  MAGNITUDE-PHASE INFORMATION COMPARISON

An interesting problem that arises in using the polar
representation is to find the best choice for the ratio of
phase quantization levels 10 magnitude quantization
levels. Pearlman (2] used distortion rate theory to obtain
the ratio Ny/N,=2,596. We now give a somewhat diffe-
rent derivation.

We minimize (12), assuming N is large. We note that

sin x = x?

I——a- (an

and

Xz 2 .‘2
(l——)al-—3—. (18)

Using these approximations, and (16) together with (12).
we obtain

0.9287N,
(0.5965+ N,)*
Assuming (0.5965+ N,)’= N}, we substitute N,=N/N,

E,x(1-(n/N,)/3) + (/N (19)

into (19), differentiate with respect to N,. and set the
resulting expression equal to zero. Solving for N,. we find

Ny= 163N (20a)
or
—zi =2.662. (20b)

4

which agrees closely with the Pearlman bound. Fig. |
shows a computer plot of the actual ratio plotied as a
function of N. The dotted line is the value 2.662. Using
this value in (19). it is a simple matter to show that. for
large N, the polar format error is smaller than the rectan-
gular format error.

VI. APPLICATIONS TO SPECTRAL PHASE CODING

From the preceeding sections, we know that if 3.33 bts
or more per sample is to be used to quantize a white
Gaussian sequence, it is better to pair the members of the
sequence and quantize them in a polar format rather than
simply quantizing the samples individually. We also know
that the phase information is much more important than
the magnitude information for minimizing the mecan
square quantization error.

Spectral paase coding (SPC) (1] {7] 1s one way i which
we may make use of the above two properties. Consider
some arbitrary data sequence xq,x,.- <. x,. where in out
examples we let /. =J3096. The message sequence is di-
vided into blocks of ¥ samples; we consider the case
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N =32, Each block of N terms is then divided in half, with

the first ¥ /2 terms forming the sequence {a, ,)5.3"" and

the second group of N/2 terms forming (a,,)%/3". The
complex-valued sequence {a,}¥/3~! is formed from
an-al.n+ia1.n' (2‘)
We then form the spectral sequence { 4, exp(if,)) from
(N/2)~1
A, exp(if,)= 20 a,exp(—id0np /N ),
n-

The SPC sequence (y,})=5 is described by the following
equations:

3 W1 ¢ . ‘
4= ’go 3 ["‘P(“P,) +°"P("P"(~/zy)]
. N
'exP('4”"p/N)v n-oi"'v-z-._lq (23)
where
S= m’ax{A’}. (24a)
¥, =0,+¢, (240}
Yoon/n=6,= ¢, (24¢c)

and ¢, =cos~*(4,/S). Equation (24) describes the coding
procedure and (23) the decoding procedure.

SPC is essentially a polar format representation of the
discrete Fourier transform (DFT) of a random phase time
series. In [8] the conditions under which the real and
imaginary parts of the samples from the DFT tend to
independent normal random variables are discussed. This
is an asymplotic result, and it tells us that the magnitude
of the DFT is Rayleigh and independent of the uniformly
distributed phase. The uniform ( — #,7) distribution of the
phase makes it a simple matter to quantize this quantity in
an optimum fashion. Because of the relatively high phase
information content, this case of quantization is im-
portant. Indeed, as is shown in Section IV, as long as the
phase is optimally quantized, the quantizer characteristics
for the magnitude component are much less important. In
addition to the uniform phase property for the asymptotic
case, we can show that in some special cases the phase has
this property for small as well as large N.

Consider (22). We assume a, can be represented as
r,exp(i8,) where 8, is uniform and independent of r, for
all 8, i#n. Under these assumptions, we have the follow-
ing theorem.

Theorem: A, is independent of 6,, and 6, is uniformly
distributed for any arbitrary block size N.

Proof: (N/2)-1
Re(4,}= 3 rcos9, (25a)

k=0

(N/2-1
Im{4,}= 3T rsing, (25b)

k=

where

=0~ %’W (25¢)

Consider the joint characteristic function of these two
random variables:

Yy(w,w)=E, E, {exp(j(w Re{4,) +w,Im{4,})))
(N/)-1

~EE, {“P(I'["’l kzo 7, COSd;

(N/2y-1
‘o, Y r,‘sin¢,,])}

k=0

) - (N/)-1
- (2‘”)(~/2)_| Er.{f_'exp(j( 2 Ty

k=0

‘[w °°s¢k+"’z‘in¢k]))d¢|d¢z‘ o dénay - }

(N/2)—)
- __.__l__._E * i 2 2.2 2.2
(2")(,4/2)_‘ "% _'exP J “, W +w2r,‘

-cos(qb, +tan"-‘i’-))d¢.' o dnga - u}

@)
(N/2)=1
“e I alletey )] 6)

where E, and E, are the expectation operators over the
subscripted random variables. However, this is circularly
symmetric. Using the properties of the two-dimensional
Fourier transform, we know that the bivanate density
must also be circularly symmetric. However, this can
happen if and only if the magnitude is independent of the
phase and the phase is uniformly distributed over a region
of support 2.

This theorem tells us that with the given assumptions,
we can guarantee that the optimal transform phase quan-
tizer is the uniform quantizer. In many cases, experimen-
tal data indicate that we are not far from the optimum
result even when the conditions for the theorem do not
hold for a particular sequence.

We now derive an expression for the quantizing error of
the SPC representation. The ideal unquantized SPC repre-
sentation is

A,exp(i6,) = 3 [expliv,) +explib, s o)) (27)

To begin with, we assume that the phase terms {y, ) are
quantized to M equal step size quantization levels. From

(2] we have
eV m i sinc(m+ 1/ M)exp(i(mM+1)y,), (28)

where v, is the quantized version of y,. From experimen-
tal results it is found that quantization of the § parameter
is negligible and will henceforth be ignored. The quantiza-
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tion error £ can now be expressed as
Em i, exp(iﬂ;) — A, exp(if,) (29)

where /ipexp(ié,l represents A, exp(if,) using the quan-
tized parameter ¥, Using (28) in (29) we have

E-% 2 sinc(m+1/M)

me0
[exp(i(mM +1)y,) + exp(i(mM + 1)y, , (v/2)]
+ (1 =sinc(1 /M))g(cxp(inp,) +exp(iy, . (/)

(30)

We square this quantity and take its expectation, using the
following expressions derived in Appendix A:

; 2 sinc(m+1/M)
mwu0
2

. [exp(i(mM+ Dy, ) +exp(i(mM + l)‘p“(,v/z,)]

SZ
=5 3 sincX(I+1/M)
In0
|1 +cos(2¢,(MI + l))].
(30
E{ (expli4,) +explity o cn/29) 3 sinc(m+1/ M)
”os

[exp( = i(mM + 1)y,) + exp(i(mM + DY, nsn)] } =0

32)
and

: 2| S 2
E{(I—smc(l/M)) i(exp(i‘p,)+exp(i¢,,(~/z,))| }

= (1 ~sinc(1/ M)’ E{A2). (33)
where E{ -} is the statistical expectation operator. Then
E, = E{(4})}(1-sinc(1/ M))

2
+ %— S sinc(/+1/M)
%0

E{1+cos[2(IM +1)s,]). (34)
From the Riemann-Lebesgue lemma [9] we know that,
for large M, E[cos2(IM + 1)¢,]« 1. Also,

3 sinc}(/+1/M)=1-sinc}(1/M)

/w0

=(1-sinc(1/M))(1 +sinc(1/M))

(35)
=2(1-sinc(1/M)), (36)
so that
E,= E{A?}()-sinc(1/ M))*+ S¥(1 ~sinc(1/ M)).
(37

TABLE 111
A COMPARISON OF NORMALIZED QUANTIZATION ERROR FOR AN
SPC SEQUENCE AND AN OPTIMAL UNIT VARIANCE GAUSSIAN
QUANTIZER FOR DIFFERPNT PrOBABILITY DENSITIES

Oensity Error {Raussiard beoin oPr
Hen, 1) n.91 t-2 R I
o, 2) 1.90 €-2 2. e
Hin, 4 7.00 -2 LR -t
||(-'—;l'%;2:) n,73 €-2 Ao
ul- 7T, A7) T3 g-2 R0 -2
ut-h, 4y 3,50 r-; LS
w5, 5 R £-2 A58 .
x{2) 1.80 £-7 12,60 00
X1 18,60 €-2 12,35 -2
X5 62.70 &~ 12,37 (-2

This error expression agrees extremely closely with
computer simulations and with the error expression found
in [1, eq. (22)] which is derived by a different method. The
second term contributes the most to F,.

We now present examples that make use of a sequence
of 4096 zero mean, unit variance Gaussian random vari-
ables. We first form the SPC version of this sequence
allowing four bits per SPC sample. The error expression in
(37) predicts a mean square error of 2.2 x 10 % per sample.
The actual computed average error per sample for SPC
block sizes of 32 is 2.3x 10~2, An optimal Max {4} quan-
tizer would give an error of 0.91x 102 per sample. By
using SPC we create only a little over twice the minimum
achievable error for this signal and this number of quant-
zation levels. However, if the signal statistics change and
the same quantizers are employed. what is the expected
result?

Table Il summarizes a number of computer simula-
tions for Gaussian, double sided exponential. and uniform
random variables coded using both the optimal unit van-
ance Gaussian-Max quantizer and SPC. N(0.4) is the
zero mean, variance of 4, Gaussian density; U(—4/2.
A/2) is the zero mean, variance of 4?/12, uniform den-
sity; and X(A) is the zero mean, vanance of 1/ 47, double
sided exponential density.

For this example, one can see that the large variance
signals have lower quantizing error if coded with SPC.
Because the Max - Gaussian quantizer has very small step
sizes near the origin. we expect that it will produce small
errors for those signals that have a large amount of
probabulity in that region. The most striking charactenstic
of these results is the way the normalized SPC mean
sqQuare error remains virtually constant for each particular
distribution. SPC tracks variations in signal power very
well.




BUCKLEW AND GALLAGHER: QUANTIZATION SCHEMES FOR GAUSSIAN RANDOM VARIABLES 543

VII. CONCLUSION

In this paper we have investigated in detail the opti-
mum quantization of two-dimensional Gaussian random
variables. Results are put forward to prove that, in gen-
eral, polar format is superior to rectangular format. Ap-
plications of this to a coding scheme (SPC) are studied in
order to explain why SPC seems to exhibit robustness with
respect to variations in signal statistics and signal power.

.

APPENDIX A

We will now derive (31). Taking the square of the expression
and moving the expectation operator through the sum leaves

SZ

T 2 3 sinc(m+ 1/ M)sinc(/+1/M)

ma0 im0
-E{exp(iM(m—I),) +exp(iM(my, - Ny o (n /1))
-exp(i(¥p — ¥p o ¥ /1))

+exp(—iM(ly, — my, . vs2))expl— iy, - %MN/Z)))
+exp(iM(m— 1), v/0)}- (A))

Assume that 4, is independent of §,. This means that the 6, and
¢, used in the expressions for v, and y, , v/ arc also indepen-
dent. Therefore, the expectation in (A1) is zero except for those
terms where /= m. Consequently, this expression is equivalent to

SZ
T 3 sincd(i+1/M)
1»0
E{2+2cos[(MI+1)(¥, ~¥puia/n) ]} (A2)
Because
4"_4"0(/\’/2)-%" (A3)

we have

2
52- S sinc’(l+|/M)[|+cos2¢,(m+|)]. (A4)
1n0

Equation (32) is obtained by a similar argument. For (33), we

recognize that

2 (EXB(M,) + exp(iy s u/2)) = ApexD(i,). (AS)

Therefore,
E{(1 -sinc(1/ M))*| 4, exp(i6,)[*}

b

2l

3]

{4)
151

16
7
18

9

=(1=sinc(1/M)PE{42}. (A6)
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Two-Dimensional Quantization of Bivariate
Circularly Symmetric Densities

JAMES A. BUCKLEW anp NEAL C. GALLAGHER, JR., MEMBER, IEEE

Abstract—The problem of quantizing s two-dimensional random vari-
able whose bivariate deansity has circular symmetry is coasidered in detail.
Two quaatization methods are coasidered, leading (o polar and rectangular
represcatations. A simple necessary and sufficient coadition is derived to
determine which of these two Quaatization schemes is best. If polar
quantization Is deemed bDest, the question artses as to the ratio of the
number of phase quantizer levels to that of magnitude quantizer levels
when the product of these oumbers Is fixed. A simple expression is derived
for this ratio that depends oaly upoa the maguitude distribution. Several
examples of common circularly symmetric bivasiste dessities are worked
out in detall using these expressions.

1. INTRODUCTION

ONSIDER a two-dimensional random variable X
whose bivariate density is circularly symmetric. We
desire to represent this quantity by a finite set of values.
One possible representation of X leads to a Cartesian
coordinate systemm expression wherein we individually
quantize the two rectangular components of the random
variable. Another common representation leads to a polar
coordinate representation where we quantize the magni-
tude and phase angle of X. These two representations are
chosen mainly for their computational feasibility and ease
of implementation. Other authors have considered the
general problem of multidimensional quantization. Zador
{1] derives an expression for the minimum error achiev-
able by a multidimensional quantizer for an arbitrary
density, but no insight into the required quantizer struc-
ture is attained. Chen [2] describes a recursive computer
technique to solve for a “good” quantizer, but the opti-
mahty of the final solution is not assured. By constraining
ourselves to circularly symmetric densitics and also to
cither Cartesian or polar coordinate quantization schemes,
it becomes possible to reduce the optimal two-dimensional
guantization problem ' one dimension. Max [3] develops
necessary conditions for the optimality of a one-dimen-
sional quantizer. Panter and Dite [4] give a formula for
the asymplotic error to be expected for optimal mean
square error quantizers (of sufficiently smooth input den-
sities).
in Section Il we obtain a simple criterion by which to
determine whether polar format or rectangular format
gives a smaller mean square quantization error. It is

Manuscript received September 12, 1978; revised Apnl 2, 1979. This
work was supported by the Air Force Office of Scientific Research under
Grant AFOSR 78-3605.

The authors are with the nt of Electncal Engineening,
Purdue University, West Lafayette, IN 47907,

shown that for some very important cases, notably for the
Gaussian bivariate density, the polar format is asympioti-
cally superior.

If polar format is t0 be used and the product N = NN,
is fixed, where N, and N, are the number of phase and
magnitude quantization levels, respectively, the question
arises as 1o the optimum ratio N,/ N,. We derive a simple
expression for this ratio that depends upon only the
magnitude density.

In Section III we provide several examples of common
circularly symmetric densities (e.g., marginal densities are
Pearson 11, Pearson VII, sinusoidal, and Gaussian), and
we address the question of whether the rectangular or the
polar format scheme gives a smaller quantization error.

1I. DEVELOPMENT

Consider the mean square quantization error £, of a
polar format representation of the lwo—dlmenuonal ran-
dom variable x = rexp{i®):

E-zgffw' be*

Jj=li=} "¢ \Ya,_,

sz(r)drav ()

Implicit use has been made of the fact that in circularly
symmetric bivariate densities the magnitude random vari-
able with probability density f,(-) is independent of the
uniformly distributed [ ~ #,#] phase random variable. The
b, and d, are the output levels of the magnitude and phase
quantizers corresponding 10 input levels lying in the inter-
vals (a,_,4,] and (c,_,.c], respectively. Integrating over
the @ variable, (1) becomes

S 3 [ (4036 =0 -2r,

j=1i=1’g
-[sin(cj—dl-)-sin(g . d)]]“’)

It is shown in [5] that the optimal phase quantizer is the
uniform quantizer. This means that ¢,—c,_,=2%/N, and

d=—(c,_,—d)=a/N,, for j=1,--- N, This allows
us to simplify (2):

.. n
SN —-

N,
E,-Ef" 4+ b2-2rb, frdr.  (3)

N,

Differentiating with respect to b,, we find the optimum b,

0018-9448/79/1100-0667500.75 ©1979 IEEE
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b sin—;—' f:.rj(r)dr “
, ™ P 7% .
% Lo

The equation given by Max for the output levels 4, of an
optimal one-dimensional magnitude quantizer is found in
[3} to be

["‘ f(r)dr

a.

[F fnyar

.

a-,

where the optimal input interval endpoints a; (for the
one-dimensional case) satisfy

b= &)

b+
a';- ] 21¢|' (6)

If we minimize (3) with respect to the a,, we arrive at
the necessary condition (for the two-dimensional case)

b+b,, b +b;,,
am= - =gq', 7
N,
2 7
N,

This equation indicates that the quantizer interval end-
points for the optimum magnitude quantizer in the two-
dimensional case is the same as the quantizer interval
endpoints for the optimum one-dimensional quantizer.
From (4) and (5) and the preceding discussion, we have

the following relationship between the output levels b, and
b:

t

x
N,
b= — b, (8)
si N,
Consequently, (3) becomes
.om )2
sin—= [* »,

[ a,
E=E(r)-|——]| &) anar. (9
—_— - a

| ™

where E{ -} is the statistical expectation operator. In [6] it
is shown that the mean square quantization error for a
minimum mean square error quantizer is simply the input
mean square value minus the output mean square value. If

Our problem is now one of charactenzing the quantity
EX. Panter and Dite [4] give a formula for the expected
error of a minimum mean square error quantizer with a
large number of output levels and a smooth input density.
This formula is

3 at)

where

[ f(x)"’dx]’
= 12 o

Roe (7] also derives some asymptotic formulas which were
later used by Wood [8] to rederive (11). Roe’s formulas
depend on the truncation of a Taylor series expansion of
the input density. Wood, in his formula, explicitly states
that the input density and the first few derivates (up to
order five in some cases) must exist and be continuous.
Panter and Dite require that, as the input intervals be-
come very small, the density function may be approxi-
mated as a constant over each interval. In [1] it is shown
that a sufficient condition for (11) to hold is that f(x) be
Riemann integrable, a much less severe restriction then
continuity or differentiability.
We make use of the approximation

ool

sinx \? x2
(__X—) 31-3—, (12)
and of (11) in order to reduce (10) to
m \K 2 g
E,=(|—3—-N-.;)N—’z+§";-,.i, (13)

where we assume E(r?)m2 (this implies unit variance
rectangular marginal densities). If we let N be the total
number of output levels allowed to represent the two
dimensional random variable X, we have the relation,

N=NN,. (14)

Since K, >0, it is simple to show that N, = O(N'/?) and
Ny=O(N'/?) by differentiating (13) and solving for the
optimal quantities. Making use of this fact and (14), we
may, assuming sufficiently large N, write (13) as
KN} 2 o

» ——Nz + -3- 7.1- . (15)
This is then optimized with respect to N, and yields the
optimal N} as

we denote by £ the mean square quantization error Nlm 31': WN (16)

produced by an optimal N level quantizer for the random ' 13K, )
varnizable X, we may rewrite (9) as

[ L IR .m om T, [ T

sin — sin— % o sin - 2 sin - Lsino-

N [J . [ < L2 “ ] . [] s )

b’- —_—"—-- b{rz}— P ’%'l(b') L ],(’)d’+ 1~ . J l:{rl)- 7 E’V,+ |~ = [}
N No N, N,

E{r’}). (10)
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This leads to the following expression for the minimal
attainable asymptotic polar format error:

. 27(,— 27
(bP)upl- T W (l?)

Now consider the problem of optimally uantizing the
random variable X in a rectangular format. The mean
square quanuzation error E, of this representation is given
by

N N e
E=3 S [* [ {(x-0*+(r=1)]

1m) =) 817

S xy)dxdy, (18)

where N, and N, are the number of levels in each of the
respective orthogonal random variables. The other nota-
tion should be clear. Equation (18) may be written as

N,
E= 3 7 (x=f)fx)dx

1=l Ve,

N,
e
+ 2 [T -l e, (19)
]-l &-1
where we make use of the fact that the first term in the
bracket in (18) depends only upon x and the second term
depends only upon y. By symmetry arguments (since
JAx)=f(x)), we may arguc that N,=N, =N'/2 The
quantizer that minimizes the above equation is simply the
minimum mean square error quantizer for each of the two
components. Therelore, again using (11), we have for
large N
2K,
E=x
where
a0 3
[ f f(x)'/ ’dx}
-a—_ 3
K, 3 . (20)

Comparing (20) and (17), we say that polar format is
asymptotically better than rectangular format if and only

if
2K, 2K, 27
N V3 N

2
K. > -—35 v (21)

or

In other words, if the inequality is satisfied and the
original input probability density is Riemann integrable,
then we are guaranteed that there exists an N, such that
for every N >N, polar format quantization will perform
better than rectangular format quantization.

If polar quantization is deemed best for a particular
density, then what is the ratio N,/ N, that provides the
smallest total error? This question is answered by the use

of (16); we find

Noz N, 2
(7)W|-(_N—I)opl- 3K, ‘”- (22)

r

HI. EXAMPLES

For our first example we calculate the relevant parame-
ters for a random variable whose marginal density is of
Pearson type VII. This distribution is a generahzation of
Student’s ¢-distribution. The bivariate density is

P 2*(v-1)°
f(x,y) ™ Glom )+ x4yl .

—00<x,y< o0

(23)

(with 0> 1 to assure finite variance) and the marginal
density appears as

o Z(o=1°T(v+1/2)
) Ve D(o)((2(0— 1)+ x3)"*'7%)

—op <x< oo

(24)
where T'(-) is the gamma function and where we have
normalized the distribution so that f(x) has unit vanance.
The magnitude density is derived by substituting in r for
Vx¥3+y* in fix,y) and multiplying the result by 2ar. as

shown by a simple change of variable. Equation (24)
yiclds, after some tedious algebra,

ey
128(%;0-1)

where B(-; ) is the beta function. We perform similar
operations with the magnitude density to yield

K = v(t;;l)[a(é;o;l)]" (26)

(25)

In Fig. 1 K, (solid line) and (2K,7/3)'/? (dotted line) are
plotted as a function of v for values from 1.1 10 21.1. As
shown by this graph, the polar format is always asymptot-
ically best for this class of distributions. An interesting
point about this set of distributions is that, in the limit as
v—00, (23) converges to a unit variance Gaussian density.
Therefore, taking this limit in (25) and making use of
Stirling’s approximation, we have

K- \/2"

=2.721. 27

Wood [8] estimates this number as 2.73 which is close to
our derived value. From (26) we have similarly

K,-%(I‘(%))J-O.%I. (28)

which is the parameter for the Rayleigh distribution ob-
tained in the limit. Using these two values in (21), we
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Fig. 1. Solid line is a plot of K, as & function of ¥, and dotted line is a
plot of (2K,%/3)"/? a3 function of ¥ for Pearson V1I density.

conclude that asymptotically polar formatting is better
than rectangular formatting for Gaussian bivariate densi-
ties. As a matter of interest, when we substitute the value
of K, found in (28) into (22), we find the optimal ratio
No/N, 10 be 2.659. Pearlman [9] using distortion rate
theory states that this ratio should be >2.596, which is in
agreement with our result.

For the next example, consider distributions of the
Pearson II class. The bivariate density is

- v(2(v+ l)—(x’+yz))"-|
72°(v+1)°
U(2o+ 1) - (x2+xY), (29)

f(x.y)

where v>0, and U(:) is the unit step function. The
marginal density is

_ Do+ N+ 1) - x) " PUe+1)- )

1 2(o+ 1)V r(o+5')

(30)
For o= we find that f(x) has a uniform distribution. For
v = |, we have that the bivariate density is uniform over a
circular region in the plane. Using (30), we find

K -[B(%;zvgs)]:’ 3N
x 3 A
123(-5;!’+ 5)

From the magnitude density we derive that

T

In Fig. 2 can be seen a plot of K, (sohd line) and
(2A,7/3)"/? (dotted line) as a function of ¢ for values
from zero to ten. It should be noted that (30) also con-

Fig. 2. Solid line is a plot of K, as a function of ¥, and dotted line1s a
plot of (2K,%/3)'/2 as function of ¥ for the Pearson 1i density.

verges to a Gaussian density as v—oc. It 1s a simple
matter to check that the expressions in (31) and (32)
indeed approach the correct limits. From the plot 1t can
be seen that for values of ¢ in the interval (0.0, 0.4) polar
format is better. In the interval (0.4, 3.635) it is seen that
rectangular is better, and from 3.635 io infinity polar
again is better. It appears then that for the circularly
symmetnc bivariate density whose marginal density is
uniform, we have the interesting result that rectangular
format is asymptotically better than polar format.

In our analysis and in the examples considered so far
we have consirained the class of quantizers considered to
two different types, the rectangular format and the polar
format. In general, neither of these schemes will be opti-
mal for an arbitrary two-dimensional random variable
with a circularly symmetric probability density. Zador [1]
gives an expression for the asymptotic mean square error
E, of the optimal two-dimensional mean square error
quantizer. This equation is

E=C/N, (33)
where

CI- -ls—\s/j-[f,:offx.y(x'y)'/zdxé'}z- (34)

For the Pearson VII density C, =4.0307 v /(¢ - 1), for the
Pearson II density C, =4.0307 v /(v + 1). Since, in the limit
as v becomes large, both of these classes of densitics
converge to the Gaussian, the smallest error attainable for
a two-dimensional normat random variable is approxi-
mately 4.0307/N. The best that we can do with a polar
format representation is 495/ N and the best that we can
do with a Cartesian format representation is $S.442/ V.
There is certainly room for improvement here. However,
the important thing to note is that the structure of the
polar format quantizes is known while that of the theoreti-
cal optimum quantizer is not.
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In Section 11 it was stated that a sufficient condition for
(11) to be valid is that the magnitude density function be
Riemann integrable. For most density functions of inter-
est in modeling physical systems, this criterion is met. One
group of densities that does not meet this condition is the
set of atomic densities, i.e., densities for which probability
mass is contained at a single point. In a circularly sym-
metric bivariate density, the phase must be uniformly
distributed [ — 7, #]. The only quantity that can be discrete
is the magnitude distribution, i.e., we may have “rings” of
probability mass distributed in the plane. Suppose we
have a single “ring” of probability mass, where the radius
of the ring is one, i.e.,

F(r)=U(r—1), (35)

where F(-) is the magnitude distribution function and
U(-) is the unit step function. The rectangular component
marginal density is the sinusoidal density

-_lj(l;‘_z_). 36
M= i C9

This density function is Riemann integrable, hence (11)
and (20) are valid. This implies the rectangular format
error is O(N ~'). Now consider the polar format case. For
N.> 1, E)=0. This implies the polar format error for
large N is O(N ~2). Clearly polar format is asymptotically
better for this density. By extending this argument, we
may say that if P(r=0)51, then for any bivariate circu-
larly symmetric density with an atomic magnitude density
with a finite number of atoms, polar format will give a
smaller asymptotic mean square quantization error than
rectangular format.

IV. SumMmary

In this paper we have derived a simple criterion to
determine whether rectangular format or polar format
gives smaller mean square error for circularly symmetric
densities. The optimal ratio of phase quantizer levels to
magnitude quantizer levels is also derived. Several exam-
ples including the Gaussian case have been studied in
detail.

It is interesting to note that polar format is not always
better than rectangular format even for the case of densi-
ties with circular symmetry.
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Abstract

This paper contains several results in multi-
dimensional quantization theory. The first section
gives a simplified derivation of a well known upper
bound on the distortion introduced by a k~dimen-
sional optimum quantizer. It is then shown that an
optimum multidimensional quuntizer preserves the
mean vector of the input and that the mean square
quantization error is given by the sum of the com-
ponent variances of the input minus the sum of the
variances of the output., Lastly, a general equa-
tion which can be used to evaluate the performance
of multidimensional companders is derived, It is
shown that the optimal compander must be conformal
everywhere, An example is given to show that as-
ynmptotically optimal performance could be obtained
through nonconformal companding schemes.

I, Int roduction

Block or vector quantization deals with the
represcntation of -ultidimcnsional elements with
a finite discrete set of values, The values to be
quantized may naturally fall into a k-dimensional
representation; typical examples are complex num-
burs, positional coordinates, or state vectors.
In other cases, k-dimensional vectors arc formed
from blocks of k samples taken from one dimension=
al signals, 1In 1964 Paul Zador published his Ph.D.
dissertation which contains a number of very in-
teresting results on the properties of optimal
block quantizers for the r'th moment euclidean
norm distortion measure (l1]. Among Zador's con-
tributions are the derivation of both upper and
lower bounds on the distortion introduced by the
optimal quantizer. These bounds are derived with-
out actually finding the optimal quantizer. Un-
fortunately, at some points Zador's development is
difficult to follow and alternate derivations and
extensions by Gersho {2}, and Yamada, et al. [3]
have recently appeared. In Section II we present
an alternate derivation of Zador's random quanti-
zation upper bound not treated in either {2) or
[3].

In [4] Bucklew and Gallagher show that for
one dimensional mean squared error distortion the
optimum quantizer has the property that the mean
value of the quantizer output equals the moan
value of the input and also that the mcan square
quantization error equals the variance of the
input minus the variance of the output., In (5)
Bucklew and Gallagher prove that the same results
hold for constant step size minimum mean squared
error quantizers. In Section III we extend these
properties to k-dimensional optimal block quan-
tizers,

W, R, Bennett (6] was the first to model a
nonuniform quantizer as a zero memory nonlincarity
followed by a uniform quantizer in turn followed
by the inverse of the first zero memory nonlincar=-
ity. This sequence of operations is gencrally
referred to as companding, The word ariscs

Poyncurod 1450

because the data is first "compressed”, then quan-
tized, then "expanded”. As a consequence the first
nonlinearity is generally referred to as the “com-
pressor” and its inverse the “expander®,

The fourth Section of this paper is an inves-~
tigation of companding in several dimensions. 1In
several dimensions the compressor characteristic
is a mapping function

X ) 3
f: R =+ X {0,1)
i=1
where X denotes the Cartesian cross product.
k
1x1(°'1) is of course the k-dimensional hypercube.

In the companding approach to optimal quantization,
we have quantizer output levels distributed in the
hypercube. We choose from these output levels the
nearest neighbor (usually) to fix), where x is the
input data vector. Our quantized output is then
£-1 of this particular output level,

Our theory will hold for analog signal pro-
cessing in several dimensions also. It happens
that it doesn't matter whether the noise is quan-
tization noise or any otlier kind of additive noise
as long as the noise components in each channel are
uncorrellated with one another. For example, let
us denote the error vector caused by quantization
in the hypercube as (r}, r2, ..., ry) . Then the
condition that is needed is E{r;r,} = 0%61j where
611 is the Kronecker delta function. In a practi-
cal sense, this is not a very restrictive assump-
tion. It may be shown, at least asymptotically (as
the number of output levels in the hypercube ap-
proaches infinity), that the error vector in an
optimal or random quantizer converges to a hyper-
spherically symmetric probability density which
satisfies our above condition,

II. Random Quantization Upper Bound

In (2] Gersho provides a very readable deriva-
tion of Zador's expression for quantizer distor-
tion. To improve continuity and readability we
employ Gersho's notation; the quantizer input is a
k dimensional random vector in Ry, which is quan-
tized to one of N levels y), Y2, «.., YN in Rg.

The space Ry is partitioned into N disjoint and
exhaustive regions Sy, S2, ..., Sy. The quantizer
is defined by the function Q(x), where for k-
dimensional input value x,

Q(x) = y,, 1f x5, oy

Note that this definition does not require y; €5S;,
although in practice y; is usually contained in S;.
The performance of the quantizer ia msasured by
the distortion

D= %:(llg - o™ ()
where || +|| denotes the usual £, norm, the operator

E{*} denotes statistical expectation and the iaput
X is a k dimensional random input vector. The case
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where r=2 is the usual mcan squarcd distortion,
The expression derived by Zador and Cerisho for the
minimum distortinn Dy obtained by use of the best
quantizer is

LA

D. =N

2 (3)

cuofpll,

where
”p(x)”a - [![p(l)ludxll/a.

and where the constant C(k,r), called the coeffi-
cient of quantization, is independent of the den-~
sity p(x) and is in general unknown. This expres~
sion is an asymptotic result valid only for large
N. Two special cases for which the value of
C(k,r) is known exactly are (2]

1 -r
C(l,xr) = Py 2 7, (4)
and
C(2,2) = —=— | (5)
3673

Consider the density p{x) that has a constant value
of one over the unit volume hypercube; then
”p(x)“k/(k+r) = 1. Consequently, Eq. (3) bacomes

D, = N clk,0). (6)
So, we see that by finding a bound on Dy we also
bound C{k,r). To find this bound we choose the
quantizer output levels to have a random distri-
bution uniformly distributed over thc hypercube.
For a particular input value x, we find the closest
output level and quantize to that value. Because
this quantizer is not the optimum quantizer the
associated distortion will bound from above the
distortion for the optimum quantizer.

To begin, place at random N independent uni-
formly distributed k dimensional samples in the
hypercube. These will be our output levels, We
take the quantizer input X to have a uniform dis-
tribution over the hypercube. We also assume that
N is sufficiently large so that there is a very
small probability that the quantizer input is
closer to an edge of the hypercube than to one of
the output values., Suppose that an input value x
has arrived and is sitting in the hypercube waiting
to be quantized. The probability that one partic-
ular output value iswithin a distance p of this
input sample is given approximately by the volume
of a sphere of radius p about that sample point, or

Prob (one particular output level is -y pk n
within p of the input sample) ° 'k '

where 1f Vi is volume of the unit radids sphere,
then Vyp™ is the volume of the sphere with radius
p. We are intcrested in the closest ocutput level
to the input sample, We really want to know the
probability that the closest output level is with-
i1n a distance p of the i1nput sample. To compute
this probability, we combine classical order sta-
tistics with the result found in Eq. (7). By
employing this approach, we compute the probability
densaty f(p) for the distance between the input
sample and the nearest output level to be
N-1 k=1

vkko .

(o) = N1 = v o)

k (8)

Dy construction p = 'i§:X;n: where x is the input
value and y; is the output value. Conscyucntly,

E{flx=- o |[F} = E(p"} (9)
so, by Eq. (2)
o= = Elp)

4
[ o™ v, o*1% kv, ap. (10)
o K K

Make the change of variables s = Vkpki 1.

1 -
D g N f sr/kll-slN 1ds,

X K|

/K
wve® o
or
Kex
r &)
pS N k (1)

/% ke
ka T(N¢ X )

where T(*) is the gamma function. For large N the
following approximation is valid:
k+xr
T (N) _—

k+r *
r(N‘G-E-Q

(12)

Therefore,
-r/k r
< N P(1+io

p s (12)
kv:/"

Because D > D., we use Eq. (6) to write

r

1'(1*;) (13)
r/k ’

ka

Clk,r) <

which is Zador's random quantization upper bound.

111. Moment Properties of Optimum Quantizers

In [4) and (5) it is shown that for minimum
mean squared error one dimensional quantizers that
the mean of the input equals the mean of output

-and the distortion equals the variance of the in-

put minus the output variance. It is shown that
these properties apply with and without the equal-
step-size constraint. In this section we general-
ize these results to the k dimensional case.

We are interested in the properties of quan-
tizers designed to minimize the distortion defined
by Eq. (2) for r = 2;

o=Lelllx -omwil® . (14)

Many constraints we impose on the quantizer can be
imposed by the functional form of Q(x); for ex-
ample, the k dimensional version of the equal-step-
size condition might require the regions Sy, Sj,
«e+s Sy to have equal area and be jointly con-
gruent, A variational approach is used in the
derivation, Assume the optimum quantizer is Qn(x);
so, an arbitrary quantizer characteristic can be
represented as

Qx) = Q,(x) + ¢ SQx), (15)

where £ is an arbitrary real variable and 60(5) 1S
an arbitrary variation chosen so that Q(x) satis-

fies all constraints imposed on the quantizer. We
know that the optimum choice for € is €=0; it 15

this value that minimizes the distortion D, Thus,
9D/3€ = O at € = 0; so,
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30 1 3 2
= === e{llx - o }i*} = 0 (16)
€ ceg X J€ €20
or
= 2elix - g 80" (0) = o, an

where we note that Q(ﬁ) is a vector valued function
so that §Q(x) represents an arbitrary variation and
consider the case where each component of this var-
iation vector equals one; consequently, Eq. (17)
becomes

B{x - g0} =0,
or

e{x} = elg (0} . (18)
Now consider the case where 69(5) = QO (x); then,

T

E{ix - o, (X )g (1)) = o,

or
T 2
E{xQ, )} = Bllig,(x) ey . a9

When the optimum quantizer is in use, the distor-
tion Dy is

1 2
o, =  Elllx- o 0 |1

e{1x - o (X)X - g (x)17)

Kl X e X

EIx)1?Y - elxpl ) - el ()x") +
= _90 0=~
+ elilgyil*h . (20)

We combine the results of Eq. (19) with Eq. (20)
to produce

o, = & EUIAI? - etigy i, e

The results of Eq. (21) combine with those in

Eq. (18) to provide the multidimensional extension
of the one dimensional case found in {41 and [5).
We note here that this derivation is quite general.
It applied to the unconstrained optimal quantizer
as well as the equal volume congrucnt area (equal
step size) quantizer because this constraint can
be included directly into the functional form of
Q(x}).

Iv. Compander Error Derivation

Our data will be assumed to be k~dimensional
samples from a probability density function p(x),

x€ RX, Denote Dp as the support of p(x). Let

£ l>p - 'xl {(0,1) such that f is regular and onto.
L-

We force f to be onto because if it wasn't,
there would be code wvectors in the hypcrcube that
would ncver be used, This would imply that the
quantizer would have to be suboptimal. We use this
condition at only one point in the derivation as a
constraint on the optimal compander. All equations
derived up to that point are still valid without
this restriction, We will sometimes represent this
mapping as

T
£o (000, £(00, couy £ ()0,

Let r = (r}, fa, «o., tk)T be the error vector in
the hypercube. As stated above, under some fairly

2
E{r*)6,
qeneral conditions, E('irj) - -—x__u where 6“

is the Krouneker dcelta, Assuming very small dis-
tortion, a good approximation to the final error
vector in the output is (£=1ye (x)r. Llet y be the
variable in the hypercube, If y = f(x) then

-1
P € (x))

p (y} = — .
b e (e iy |

Therefore the final output mean square error (mse)
may be written .

mse =

-1
- T o - - P (f (Z))dl
) e e g e g g X

k
X (0,1)
i=)

fer (£ Lign ]

Let x = £ (y) then ax = [(£™1)* (y)|dy and note
1

-1 .
that | (£ ) (y)j - IO by the inverse

mapping theorem (7). Therefore, making these
changes of variable, we obtain

mse = [ £ (£ 17T (E 017 b0 ax,

DP
again by the inverse upging theorem. Denote
(e () 1737 (£ (x) 171 = £-1(x) and note this is a
symmetric matrix for every x. Therefore our prob-
lem is to optimize

[ £ wp, wax
P
Using a matrix identity the above integral becomes,

!Dp el Wz lp txrax

Let us now take the expectation over the r variahle
which is independent of any other quantity in the
integral (one can make a random coding argument to
do this),

2

x] I A
2 2

ElrrT)ngl {5271 T2 2% |} = -——E(: ).

r r2

Wfl c ot e 1)
Therefore

2 -1
mae = !:—({-—) [ el wlp txrax . (22)
o, Py %

This expression is of interest in its own right.
E{r2)/x is the mean square error per sample suf-
fered by the hypercube quantization. So the total
error is a product of two terms operating indepen-
dently of one another. Denote the eigenvalues of
I(x) as Xi(g) (L1, eaay K)o Then

e(r?) & f P, (x)
ot A
Since our map f is onto this implies
L3
[olerw] = [TTA txiax = 1.
Dp i=]

ILet us minimize the mse subject to the above con-~
straint, It is easy to show first of all that
Xi (x) = A(x) for every i. So now minimize

a .

i d
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by X(g_)z

| Aawokax =1,

dx subject to constraint

Let B(x) = X(x)k, so minimize

p(x)
;/k dx where [ Blodx = 1,
B (x)
Gersho (2) shows that the optimal 8(5) is propor=-
1

tinal to p(0) 12X o VX200 mhis implies

1 1
Ax) = plo**? /(Ilpllkﬂm)"’2 . Using these

£{r?)

eigenvalues, the mse = If an

— el pevar
optimal k-dimensional uniform quantizer is imple-
manted in the hypecrcube this equation giwves the
same error as Zador's optimum quantizer. Our con-
di‘ion for the optimal compressor, is all of the
eigenvalues of the symmetric matrix

I 0 = (£ 0ite ()"

are the same; this implies there exists an ortho~-
normal matrix ¢(x) such that

o ] e = 2 2we
or

L = 2201 = (e e et
(£ (x)])
e e
Alx)
Since we know what A(x) is, in principal we could
solve for f'(x) for evory valuc of x. Therefore
our condition for an optimal cowpander is that

which implies is an orthonormal matrix.

1
[£* {x))/cp (5),“'2 be an orthogonal matrix for almost
1
k+2

every value of x where ¢ = wdlell ) .

k/k+2

when k=2 this condition says that f(x) must
be conformal almost everywhere. Excluding sets of
measure zero is an important point. Gersho points
out (for the 2 dimensional case) that conformal
maps do not exist for circularly symmetric proba-
bility densities. One consequence of this is the
work by Heppes and Szuz (8] which shows that you
can't tesselate a circular region with an arbi-
trary “surface distribution function" using regular
hexagons. There must always be a "slit" where the
tessellation fails., This "slit" however is a seot
of m:asure zero. It is only local conformality
almost everywhere that we need, not global confor-
mality,

We will now do an example illustrating the
use of Eq. (22]. Suppose our in}:ut probability

densaty p(x) can be written as Ll 11 p(xi). Let

.4
C= l/f‘p(x)adx and our compressor function

T
f = (fltxl, fz(xz), vasy fk()&)) where fi(xi) =

f t p(x)“dx. With little loss of generality, we

Pt
will assume f is regular. It is obviously onto,
Hence

Cp(xl)u e s o 0
s} .
0 Cp(xz) ‘
[£*(x)]= :
: 0
0 cees 0 cpx)®
L 0 )
Cp(xl)
a0 — :
[£r(x)] q:(xz)
. [¢]
] e o o & o] ——l—-TE
Cp(ﬁ‘)
The eigenvalues of I-l(i) are 30’ i=1l,...,
C p(xi)

ks SO the error may be written

<
I I pix )a
JEAL F o gm 3 X

mse
k i=1 Dp CZP(xl)zu

2 [ ]
- Ef; } f p(x)l-mdx
-l

© 2 L
= e{r?) [f p (x) %ax [f p(x)l'mdx]

Using H3ldors inequality we may show that a = 1/)
minimizes the error or

2
mse = E{r )"p”l./li .
But locking at Zador's coefficient for the one
dimension case (see Eq. 4) we have

Pllisa
nse (o @ e———il

1-Dim 12 N2
Therefore this compressor characteristic gives us
the same error as the optimal 1 dimensional quan=~
tizer if in the hypercube we quantize with one
dimensional uniform quantizers. We can quantize in
the hypercube using optimal schemes for a coeffi-
cient of (as K + @)

lell, 4

MG & e
sz‘ne

Therefore the best we may do with this compressor

characteristic is a gain of 2—:25 = 1.42 in signal to
quantizing noise ratio, at the expense of imple-

menting optimal uniform quantizers in the hypercube.
k

As a second example suppose again p(x) = ,p(xll .
12l

Suppose we choose the eigenvalues of 2(5) to be
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1 T2
! P(ni)k"1
)=l
2 aledti
M) k-1

f p(x)k*ldx
-0

This obviously lcads to a nonconformal map, We may
using Eq. [22] now evaluate the error for such a
compressor characteristic to obtain the mean square
error to be

mse = E{!‘z} ”p”k-l - S(‘z} "P” (k~1)
k*2 (k=1)+2

which are the optimal coefficients for k-1 dimen-
sional space, This implies the possibility of ob-
taining nonconformal mapping functions that will
asymptotically give optimal results.
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Abstract

A critical review of many important developments
in quantization theory is presented beginning with
Bennett's 1948 paper ([1). The purpose of this
study is to resolve some seemingly conflicting
results. We then turn to a discussion block or
vector quantizers, We show that minimum mean
squared error block quantizers preserve the input
mean in the output variable and that the error
equals the variance of the input minus the variance
of the output. We also illustrate a way by which
the compander method of quantizer implementation
may be extended to block quantizers.

1. Introduction

The gquantization probtem has been around for
ages, The fact is that almost atl real numbers
must be quantized if they are to be represented by
use of a finite number of digits. 1If we are to
choose a real number at random, the probability is
one that the number would need to be quantized for
representation with a finite number of digits.
Early modern work on guantization includes the work
of Bennett (11, and Panter and Dite (2). Bennett
is the first to present an analysis of companding
systems. A typical companding system is shown in
Fig. 1, where the sy tem input is x and output is
Ye

y* Gly)

P

ty

" ARESSOR UNIFORM QUANTIZER EXPANDER
Figure i Typical Companding System

*This wor «es supported in part by the Air Fforce
Office . Scientific Research under Grant AFOSR
78-3605.

The input is first compressed by the nonlinearity

6-1(’) whose output is uniformly quantized over the
interval [0,1). It is this quentized value that
may be transmitted over a communication Link or
stored in digital memory. When we require a true
representation of this quantized value, this uni-
formly quantized value s expanded by the non-
linearity G(*), Bennett presents an expression for
the mean square quantization error for a companding
system in the asymptotic (large N) case, This work
for further extended by Panter and Dite who studied
the design of optimum non-uniform step size quan-
tizers. They derived asymptotic expressions (large
N) tor finding the minimum mean squared error quan-
tizer design.

In his studies, Bennett made 3 number of empiri-
cal observations concerning the statistical proper-
ties of quantized signals. These observations
where given a theoretical foundation by Widrow [3].
Widrow showed that the instantaneous quantization
error, which {1s & signal dependent error, can be
treated as statistically independent from the sig-
nal and wuniformly distributed over the quantizer
step size (for equal step size quantizers) when the
number of quantization levels is sufficiently
Llarge. In another often referenced paper Smith (4]
further extended Panter and Dite's results and com-
pares theoretical and experimental studies. These
four papers by Bennett, Panter and Dite, Widrow,
and Smith form the basis for subsequent work on
quantization,

3y 1957 there was stitl no exact solution for
the optimum quantizer; however, during this time at
B8ell Labs, Lloyd (5] completed an unpublished
technical memorandum in which he provides a method
of solution for the optimum quantizer, It 1is un-
fortunate that Lloyds work was never published be-
cause it is Max's 1960 paper (6] that receives most
of the acknowledgement for solving the optimum
quantizer design problem. Max's paper is probably
the most widely referenced paper on quantization.
In their respective papers Lloyd and Max develop
necessary conditions for the optimum quantizer;
however, these conditions are not sutficient and
they can be satisfied for non-optimum quantizers.
In 1964 Fleischer (7] presented conditions under

To be presented af the 12¢h Annual Symposdium on System Theory, May 19-20, 1980, ¥ inginia Beach, / irginia.
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which Max's results are also sufficient.
Fleischer's congitions establish that Max's results
are both necessary and sufficient for the optimum
quantization of many random variables which have
common distributions such as Gaussian or Rayleigh.
We move to 1977 when Sripad and Snyder [8) con-
sidered the correlation between the input signat
and quantization noise. Their work actually
represents a re-evaluation of Widrou's results.
They developed necessary and sufficient conditions
for the quantization error to be uniform and un-
correlated with the input. These conditions are
very restrictive and are not satisfied by most com-
mon densities of interest, Although Sripad and
Snyder do not actually do so, the flavor of their
paper is to contradict the observations of Bennett
and Widrow that the quantization noise behaves Like
uniformly distributed, uncorrelated (independent)
additive noise. The difference between these ap-
parently conflicting claims is that Sripad and
Snyder are saying that quantization noise is usual-
ly not exactly uniformly distributed and uncorre-
Llated with the signat, while Widrow is saying that
although these properties are not exact they often
are almost valid. Experimental evidence seems to
verify Widrow's conclusions as being valid in most
situations while Sripad and Snyder are cautioning
us to be careful in ioplying Widrow's conclusions.
The work of widrow, and Sripad and Snyder ap-
plies only to uniform step size quantizers with an
infinite number of output levels; of course, real
quantizers have only a finite number of output Llev-
els. Thus, for a real quantizer the error analysis
may be divided into two parts: one part occurs when
the input signal falls within the quantizer's
range, called non-truncatiosan error, and the other
is called truncation error .nd occurs when the in-
put signal falls beyond the quantizers range. The
analysis of Widrow, and Sripad and Snyder implicit-
ly assumes that the contribution of the truncation
error can b made arbitrarily small by choosing the
quantizer ranqge to be arbitrariiy large. For a
quantizer with a finite number of output levels
this is not possible because the quantizer error
witl increase in an unbounded manner as the gquan-
tizer range wncreases. If we turn attention to op~
t:mum uniform step size quantizers, where the gquan-
tizer step size is chosen s0 as to minimize the to-
tal error, we can study the optimum relationship
between the truncation and non-truncation errors.
We may then study the ' aiting behavior of the er-
ror as the number o output levels becomes large
and determine the rel e effect of the truncation
error. In section .1 we will study the effect of
truncatton error and iltustrate through an  example
the tact that truncation can not be ignored.
Optimum quantizers, both uniform step-size and
non-uniform step-size, possess a number of in-
teresting propertiss not proven until the 1979 pa-
per of Buckivw .4 Gallagher (9)., Here it is shown
that for *° non-uniform step-size minimum mean
LN ereor quantizer the output mean value 1§
cgua' 1o the ‘aput mean value, It 1is also shown
that ths quantizer's error is equal to the input
varignce mine - the output variance. In an  unpub-
Lrnhed  maneg., + ducklew and Gallagher prove that
the minimy~ 7 squared error uniform step size
quantizer ousesses these some two properties, By
using the,e¢ properties it can also be shown that
corrntation bLetween the quantizer erfor and input

signal is equal to minus the mean squared error,
Consequently, for minimum mean squared error quan-
tizers, the signal and noise are negatively corre-
lated, but this correlation is near zero for qua -
tizers with small error. In section 11I, we
present a novel derivation of the aforementioned
properties; this derivation is general and is vatid
for both the optimum non-uniform step-size and uni-
form step size quantizer.

To this point we have only discussed the quanti-
2ation of scalar quantities, Often the data to be
quantized naturally falls into a k~dimensionat
representation; typical examples are complex num-
bers, positional coordinates, or state vectors., 1In
other cases, k-dimensional vectors are formed from
blocks of k samples taken from one dimensional sig-
nals. The topic of block or vector quantization
deals with the representation of multidimensional
elements with a finite discrete set of values, In
1964 lador published his Ph,D. dissertation which
contains a number of very interesting results on
the properties of optimal block or vector quantiz-
ers for (he r'th moment euclidean norm distortion
measure [10]. Among lador's contributions are the
derivation of both upper and lower bounds on the
distortion introduced by the optimal quantizer.
Unfortunately, at some points lador's development
is difficult to follow and alternate derivations
and extensions by Gersho [11) in 1979, and vamada
et. al. [12] in 1980 have recently appeared. In
section IV we opresent an alternate derivation of
lador's upper bound. Unfortunately, this work on
vector quantizers provides very few clues on how to
actually find the best quantizer and this remains
an unsolved problem at present.

Some of the early work on the implementation
vector quantizers actually occurred in the study of
computer-generated holograms; see the work of
Peariman [13) and Geallagher (14) for references.
The questions treated in this work concerns the
representation of two-dimensional vectors in quan-
tized polar format and quantized rectangular for-
mat. The reasoning behind this work is to investi-
gate the relative merits of those two-dimensionatl
quantizers that we know how to implement whereas we
don't know the optimum implementation. In their
1978 paper Pearlman and Gray [15) employ an infor-
mation theoretic approach to study the quantization
of two-dimengional Gaussian vectors where the
vector's X and Y components are independent, zero
mean, and identically distributed. In particular
they compare polar quantization against rectangular
quantization, They show that, when the vector is
in polar form, the phase component carries signifi-
cantly more information than the magnitude com-
ponent. As a result, the phase component should be
quantized very finely in comparison to he magnituge
component. Pearlman and Gray show that for a fixed
number of output (evels NPNR = constant, the op-
timum ratio between the number of phase Lleveis No
and the number of magnitude levels “P is approxi-
mately NG/NR = 2.6, In 1979 using a non-
information theoretic approach Bucklew and Gal-
tagher (161 rederive this same ratio and then gen-
eralize the analysis to circularly symmetric dis-
tributions [17], It is found that in mcst, but ~5°
all, cases polar format quantization is better than
rectangular format.
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The problem of the design and implementation of
optimum vector Quantizers remains open., Sections
IV, V, and V1 of this paper will discuss some re-
cent work toward the solution. In section 1V we
show that the optimum vector quantizer shares some
common properties with the optimum scalar quantiz-
er; in particular the mean value of the quantizer
output equals the mean value of the input, and the
mean squared error equals the input variance minus
the output variance. Section V contains a simpli~
tied derivation of 2ador's upper bound on the guan-
tizer error, and section VI discusses the possibil-
ity of extending the companding concept to multi-
dimensional guantization.

11. Truncation Errors in Optimum yYniform
Step-Size Quantizers

Much of the work dealing with the properties of
uniform step size quantizers assumes a nonzero
step-size A with an infinite N== number of output
Levels. In other words the quantizer has infinite
range and never reaches a saturation point which is
the largest (or smallest) value to which an input
may be quantized. If an input value falls between
the Llargest and smallest saturation points, we say
that it is within the quantizer's non-truncation
region. If an inpit value falls beyond a satura-
tion point, we say that the input falls within the
truncation region and call this type of error trun-
cation error, Practical quantizers have truncation
errors and it is the tradeoff between the trunca-
tion and non-truncation errors that is optimized
when we design a minimum error quantizer.

A common approximation for the mean squared er-

ror of a quantizer with stc) size 4 is A2/1Z. This
approximation is derived under the assumption that
the truncation error is negligible. 1In many non-
pathological situations the contribution of the
truncation error can 1ot be ignored; this can be
most simply illustrated through an example. con=-
sider the probability density function

) = —-ome—en . 1)
C1efu)2>*?

Let the non-truncation region be (-T,T), where the
value of T is approximately given by T=NA/2. 1f
the quantizer input falls in the region (T,=), the
output value s T+a/ . 1f the input falis in the
region (-«,T], the out 't is quantized to =-T-a/2,
It the input fatle wi 4+ the non-truncation region
(-1,7T), then tre mean ..uared is accurately approx-

imated as A?/12. Because the density in (1) is

sven, we can write the following approximate ex-
pression for the mean squared error D

o=2f r—-:-%:zv(na. N -‘1’-2-29(|x| <. @

In the Limit as the number of output levels N goes
to infinity, the value of T also approaches infini-
ty and the v°' » of A goes to zero. Consequently,
for large i, *~* <econd ter~ in (2) is accurately
representr _y A2/12. in the first term of (2),
for lar. ;alues of T, the density in (1) may be
approximated as

146
'f ; 3 9]
Ix]

f(x) =

therefore, for large T

- 2
8.2 148/2 A
D-ZICx-T-J dx +
h z |x|§¢e kH
I ST T L I 1Y
1 2 3 2
where
2
-5 &
'K.IT ’1—5, &)
(2+4)
K, = = -2
1 676
A(2+8)
K=*=w "%,
and
4,2
‘3’(}-) .
Equation (4) may be rewritten as
2
| ) [
DIK.' (T) 017. )

This is an approximate expression valid for large
N. To find the optimum value for 4, we take the
derivative of D with respect to & and set the
resulting expression equal to zero. This yields

2
NA)-G [

Ttk

;
consequently, the minimum D is given by

2
n-:—zuo%), 12

Depending on the value of &, the value of D can be

significantly Larger than the common AZI12 approxi=
mation. Loosely speaking, the validity of this ap-
proximation seems to depend upon the existence of
higher order moments. If all moments exist, then
the approximation appears to be asymptotically
correct. If only a few moments exist, it does not
seem to be a good approximation,

1I1. first and Second Moment Properties of
Optisum Quantizers

At this point a general definition of a quantiz-
er is required. First, the input signal space is
partitioned into N disjoint and exhaustive regions
S1,sz,...,su. The quantizer function is defined by

the function Q(x), where for input value x
Qx) = Yo it x ¢ $i . (8)

Note that this definftion does not require vy € Sy,
although in practice Y4 is usually contained in S;-
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The performance f the quantizer is measured by the
mean squared dis ortion

b = ECCx-a( )1°

), (M)
for random input X, Assume that the optimum quan=-
tizer character stic is denoted by 00(:). At this

point, we may of may not add the restriction the

oo(x) represent an uniform step-size quantizer.

This restriction may be represented in the func~
tional form of Q(x) and eo(l). Consider the quan-

tizer function Q(x) = Qo(l) + ¢8Q(x), where 6&6Q(x)

represents an arbitrary variation and ¢ is a real
vatued constant. It should be noted that the term
¢8@(x) must be such that Q(x) is a legitimate quan-
tizer cheracteristic. If the uniform step size
restriction 13 in place, then Q(x) must satisfy
this restriction clearly ¢ = 0 is the optimum
choice for this parameter; thus,

a0 =0, Q0

14

or
E([x-QO(I)JSO(K)) =Q . an

As proven to thys point, the condition in (11) s
anly a necessary condition for the optimum quantiz-
er. In order to prove that this condition is also
sufficient we consider the error D for an arbitrary

quant izer Q(x) = 00(1) + cda(x).

2

0 = E{(X-Q(x>]™)

ECtx-0501%) - 2EC0X-0(x) 16000}
+ . 2ecreacn 3ty . a

The first term in this expression is the error for
the optimum quantizer Qo(l). The second term is

2ero by (11), and  the third term must be non-
negative, Consequently (11) is both 3 necessary
and sufficient rundition for an optimum,

We an use (11) to show that for the optimum
quant izer the mean of tne output equals the mean of
tne input. To an this we choose the arbitrary
Jsariation 6Q(x) - 1; th -~efore by (11)

E(X-QO(X)) = 0, a5

1t we choose 00(-) x, then
2

E(xao(x)) = L([OO(X)] ), (14
and consequent!
. > 2 2
Ax-ao(x)T } = E(X7) - E(tao(x)l ), «s
and finally,
€0 vy v - ECCx-a, 022, 18)
tquation states that the mean squared error

tor the optlirum gquantizer equals the input variance
"1nus the output variance, Equation (16) indicates

that the correlation between the quantization error
and the quantizer input is equal to the negative of
the mean squared error,

Iv. First and Second Moment Properties of the
Optimum Vector Quantizer

As the second moment properties for the vector
quantizer are simitar to those properties discussed
in the previous section for the scalar quantizer,
we will only sketch their derivation. We consider
the k-dimensional case where the distortion 0 is
measured as

b = 1 eclix-awil?, an

where X and Q(X) are vector valued, and |[*]|
denotes the usual Euclidean distance norm. Again a
variational approach is employed, where an arbi-
trary quantizer function @(x) is written in terms
of the optimal quantizer as

a(x) = 00(_1(_) + ¢ 8alx),

tor a vector-valued variation 6Q(x). As before, we
take the derivative of D with respect to ¢, and set
the result equal to zero at ¢=0; the result is

£Cx-0,0017 6000} = 0, a8

where [ ]1 denotes the transpose of the column vec-
tor. This expression is both necessary and suffi-
cient for the optimum quantizer oo(l). The optimum

vector quantizer also has the following properties
analogous to those scalar quantizer properties
found in (14), (15), and (16):

ECCX-a (01700} = 0 a9

1 1 2 2
O Ix-050 1y = FLeC}Ix]®Y - eCllag0 {12, 20

and
Tecta c0-xa7x3 = - L ectta 00-x]1% Q@n
xE {0 -X1 X 3 ot .

V. ador's Random Quar-:i:ation Bound
The quantizer input is a k dimensional random
vector in R which is quantized to one of N levels
LyrLoreeeely in Rk. The space Rk is partitioned

into N disjoint and  exhaustive regions
51’52""'SN' The quantizer is defined by the

function Q(x), where for k-dimensional input value

LY

a(x) = X, it xeS..

- i
The performance of the quantizer is measured by the
distortion
1 r
D = T eCi|x - O(E)IC )

The case where r=2 is the usual mean squared drs-
tortion, The expression derived by Zador [10) and
Gersho [11) for the minimum distortion oo obtained

by use of the best quantizer is
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k/(ker)’
where p(x) is the probability density for the input
vector X, and

Hetoll, = tfteto1'an’’™ .

Cik,r), called the coefticient of
quantization, is independent of the density p(x)
and is in general unknown. This expression is an
asymptotic result valid only for large N. Two spe-
cial cases for which the value of C{(k,r) is known
exactly are [11]

The constant

1 -r
ca,rm = 2,

and
5

36,/_3'.

Consider the density p(x) that has a constant value
ot one over the unit volume hypercube; then,
llp(‘)||k/(k0r) = 1, Consequently, €Eq. (22) be~

comes

€(2,2) =

o, N “Cik,r). @3

1}
50, we see that by finding a bound on Do we also

bound C(k,r). To find this bound we choose the
quantizer output levels to have a random distribu-
tion uniformly distributed over the hypercube, For

o particular input value x we find the closest
output ‘level and quantize to that value. 8ecause
this gquantizer s not the optimum, the associated

distortion wilt bound from above the distortion for
the optimum quantizer,

To beqin, place at random N independent uniform-
ly distributed k dimeasional samples in the hyper-
cube. These will be our output Llevels. We take
the quantizer input X to have a uniform distribu-
tion over the hypercube, We also assume that N is
sufficiently large so that there is a very small
probabiti1ty that the gquantizer input is closer to
an edy- of the hypercube than to one af the output

values. Suppose that an input value x has arrived
ond 1s sitting in the .ypercube waiting fu be gquan-
tized. The probabili® that one particular output
value is within a ¢« -ance p of this input sample

is given approximate , oy the volume of a sphure of
radine ihout that sample point, or

Prob (one particular output (evel is

oy .
within o of the input sample) Vir 020

where 1f ¥, i< yolume of the unit radius sphere,

sher is the volume of the sphere with radius

K
kD
0. We ar. interested in the closest tevel to the
input sample. We want to know the probability that
the closest wt level is within a distance o of
the input sa piu . 7o compuie this probability, we
combine .»1cal order statistics with the result
found ir .J'). By employing this approach, we com-
pute the probability density f(p) for the distance

between the input sample and the nearest output
Ltevel to be
f(o) = NL1 - vka"J""vkko"’1. (25)
Note that for large values of N this probability
density goes to zero rapidly as o increases. 8y
construction p = ||5fli|', where x is the input
value and 24 is the output value. Conseguently,
ECHIX - a0 1"y = €"); 26)
so,
1 r
0 = X E(o' )
-1 o™ Intt-v o M N v, oo
hypercuybe
If we make the change of variables s = vkak, then
we use the fact that s £ 1 to write
Nb e et
D<———{s (1-s)" 'ds
- r/k
k vk
LD N
_ _N k
: 7% - «@n
k Vk r(N*1*F)

where r(*) is the gamma function.
following approximation is valid:

- ke
[(N) k
Ker. N .
r(n*—;—)

for large N the

Therefore,
RSP
D= — (2%)
kVk
Because © > Do, we use (22) to wurite
r1+0)
Clk,r) < ;v—rﬂ:— ’ N
k
which is lador's random quantization upper bound.

1. Companding in Several Dimensions

For one dimensional quantizers companding pro-
vides a method whereby asymptotically optimum quan-

tizers may be implemented in a straightforvard
fashion, In several dimensions the compressor
characteristic is 2 mapping function
k
f: R+ x (0,1), where X denotes the Cartesian
i=1
k
cross product. The set X (D,1) is of course the
i=0

k-dimensional hypercube, In the companding ap-
proach to optimal quantization, we have quantizer
output levels distributed 1in the hypercube. We
choose from these output levels the nearest neigh-
bor to f(x), where x is the input data vector. Our
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quantized output is then 1'1 of this particular
output level, Denote the error vector caused by

quantization in the hypercube as (r1,r2,...,rk)7

and impose the condition that E(r r. ) = °E61J

where °ij is the Xronecker delta. It nay be shown

that as the number of output levels N in the hyper-
cube approaches infinity, that the error vector for
an optimal quantizer converges to a hyperspherical-
Ly symmetric probability density which satisfies
the above condition, In addition, for large N
there are an infinite number of quantizers each of
which has approximately the same near optimum er-
ror. These quantizers may be generated as transla-
tions of one another within the hypercube. A sim-
ple way to visualize this fact is by use of the one
dimensional companding system where the compressor
function output is a uniformly distributed (0,1
random variable, We can form translations of the
uniform quantizer and still obtain approximately
the same mean syuared error in the expander output.
Su, we may consider an ensemble of near optimum
quantizers over the hypercube, where each quantizer
approaches the optimum quantizer in the asymptotic
(Large N) case. By allowing us to choose (in an
arbitrary fashion) f-om this ensemble of quantizers

for each input vector ('1"2”""k)" we can

decouple the error vector (r1,r2,...,rk)T from the

input so as to make this error vector approximately
independent of the input vector. This procedure is
analogous to the technique of assigning a random
time origin to sampling nrperations in order to
model the samp'ed signals as wide sense stationary
processes.
Our data wilt be assumed to be k-dimensional
samples from a probability density function p(x),
X ¢ Rk. Denote So as the support of o(x). Let
k

f: Sp - X (0,1 such tht f is regular and onto,
i=1

We can represent this mapping as

T
t = (11(1),12(1),...,fk(1))

Let r = (r1,r2,...,rk) be the error vector in the

hypercube. Assuming ery small distortion a good
approximation to the i(inal error vector in the out-~

- . - L]
put is (f 1) (x)r, where (f 1) (x) represents the
matrix of partial derivatives of the inverse opera-

tor 7. Ler y be the variable in the hypercube.
Ity = tw, thnn the probability density for y may
be written in ‘-rms of the probability density for
| Y

o (7T (yn
py) = e,
Y AP

Tnerefore the final output mean square error D may
be written

P, (f 1(y))d1

= feraD T o™ a g e e
k 1t ¢ Teyn |
X
i=1
et x = t7¢p), then dx = 1™ (Idy and note
that I(f-1)'(z)! = ——,-—1’— by the inverse map-
I ¢t e

ping theorem. Making these changes we can write

o= f et ' e w1l (wa .

%

[ - L] - -
penote Tf (03”170 (037! = 17w and note this
is a symmetric matrix for every x. Therefore our
problem is to minimize

T gl
sf L 2 rp, ()dx.
p
As discussed earlier, there is an ensemble of near
optimum quantizers. I[f we now average the distor-
tion D over this ensemble, we assume that the error
vector r is sufficiently decoupled from the input

vector so as to be treated as an independent random
quantity. Consequently, we have

D= I te( 5_1 (1)2‘)9“(5)&.

sD
= of f tr{ i1 (x)}p_(x)dx.
S
P

So, the total error is a product of two terms
operating independently of one another., Denote the

eigenvalues of 1(x) as A3(x) (i = 1,...,k). Then

D= 2 ): e, (x)/x (x)dx. (30)
1=1

Consider, for the moment, a random vector with a
k

uniform distribution over the hypercube X (0,1);
i=1
the f-1(-) function maps this vector to a vector in

1]
R, with support Sp and density |t (x)|. Therefore

we have
, k
St i =f 1 2o =1 a1
S i=1

The problem now is to minimize the expression in
(30) subject to the constraint in (31). We may do
this in the following fashion: (1) Assume that ex-
cept for Aj(i) all of the Ai(l) are the optimum

choice. (2) Use a variational method to optimize
‘j(i) subject to the constraint (31). The result

is that xi(x) = A(x) for all i and that the op:imum

A(x) s
. 1
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Using these eigenvalues, we find that the minimum
error DO is given by

L2
% = o 1Pl ey

If an optimal k-dimensional uniform gquantizer is
implemented in the hypercube (this determines the

value of of) this expression gives the same error

as

lador's optimum quantizer (10].

Additional

results on the properties and implementation of
multi-dimensions companding systems are presented
in an as yet unpublished paper by Bucklew [18].
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PASSBAND AND STOPBAND PROPERTIES
OF MEDIAN FILTERS"

N. C. Gallagher, Jr.
School of Electrical Engineering
Purdue University
W. Lafayette, IN 47907

ABSTRACT

Median filtering is a signal smoothing tech-
nique that has been applied successfully in speech
and picture processing. However the wmethod
suffers from the want of a formal theory by which
filter properties may be studied. In this paper
Necessary and sufficient conditions for a signal
to be invariant under median filtering are
derived. These conditions state that a signal
must be Locally monotone to pass through a median
filter unchanged. It is proven that successSive
median filtering of a signal (i.e. the filtered
output is itself filtered) reduces the original
signal to an invariant signal called a root sig-
nal. Ffor a signal of Length L samples a maximum

of %(L-Z) repeated filterings produces an root

signal.
I. Introduction

In many signal processing applications a method
called median filtering has achieved some very in-

teresting results. One useful characteristi¢c of.

median filtering is its abitity to preserve signal
edges while also filtering out impulses. Promis-
ing applications of median filtering are picture
processing, and speech processing [1-3]. These
applications employ the median filter as a signal
smoother. The implementation of a median filter
requires a very simple digital nonlinear opera-
tion. To begin, we take a sampled and quantized
signal of length L; across this signal we slide a
window that spans 2N+1 signal sample points. The
filter output 15 set equal to the median value of
these 2N+1 signal samples. The filter output is
associated with the time sample at the center of
the window. To account for start up and end ef-
fects at the two endpoints of the L-length signal,
N samples are appended to the beginning and the
end of the sequence. The appended samples are
constant and equal in value to the first and Last
samples of the original sequence, respectively.
As an exampte, consider the binary valued sequence
of Fig. 1(a), where Ls10 and N=1; the median fil-
tered signal is plotted below the input signal.
The appended values are marked as X's. Figure
1(b) illustrates the filtering of the same input
signal as for Fig. 1(a) but we set N=2; we set N=3
for the example in Fig. 1(c). The signal ot Fig.
1 passes undisturbed through the N=1 filter; how-
ever it is affected by the N=2 and N=3 filters.
The signal would be reduced to a constant value by
an N=4 filter.

*The research was supported by the Air Force Of-
fice of Scientific Resesrch under grants AFOSR
78-3605 and AFOSR 76-3062.

‘*[M;..g(\- s Gy oo

G. L. Wise
Department of Electrical Engineering
University of Texas
Austin, Texas 78712

The results illustrated in Fig. 1 suggest the
concept of a filter “passband” and “stopband”.
The given signal is in the passband of the N=1
filter and the stopband of the N=4 filter. If we
view the median filter as one that passes edges
but not impulses, then edges for an N=1 filter may
be impulses for an N=4 filter. But what about the
N=2 and N=3 filters? Suppose the signal of Fig. 1
is filtered twice in succession by the N=2 filter;
in other words, the filtered output is again fil-
tered. The result is a constant output identical
to that obtained by a single filtering with an N=4
filter. 1f the constant is filtered again, the
output is the same as the filter input; the con-
stant is invariant to median filtering. So, by
filtering the original signal two times with an
N=2 or N=3 filter we have a resulting signal that
is dnvariant to successive filterings, the same
result obtained by a single pass with the N=4
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Fig. 1. Signat Filtered by Three Different
Median Filters (3) N =1, (b) N =2,
and (¢) N = 3,
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filter. Note that the input signal of Fig. 1 is
invariant to repeated filtering with an N=31
filter. We see that signals which do not reside
entirely within the filter "passband” can be re-
duced to theiyr passband component by repeated
filterings.

At present, there has been no proposed median
filter design procedure, There is no method by
which the filter window size can be designed to
account for some special properties of the signal
or noise; the onty way of doing this is by trial
and error. In this paper we initiate the develop-
ment of a formal theory for median filters. e
will formalize the concepts of filter passhand and
stopband. We described desirable signal charac-
teristics for signals employed in median filtering
and show how some types of noise can be completely
removed by wmedian filtering and how other types
can not be removed. These results will be
presented through the development of a formal
theory of median filtering. In section II we
present some basic definitions that allow us to
precisely state and prove a number of interesting
results.

11. Theory 121 Median Filtering

In order to give a precise statement for the
theorems presented Later in the section a number
of definitions are necessary. We will always be
working with a sample length L where each sample
is guantized to one of K different values. The
filter window Length is the number of consecutive
samples considered when computing the running
median. We will always take the window length to
be an odd integer (2N+1) for N=0,1,2,... As noted
earlier, our convention is that the filter output
at position L is the median value obtained when
position L is in the center of the window. We de-
fine the following signal characteristics:

1. A constant neighborhood is at least N+1 con-
secutive identically valued points

2. Mn edge is a constant neighborhood whose last
point 15 the first point of a monotonic change
whose Lust point is the first point of another
constant neighborhood having a different con-
stant value from the first constant neighbor-
hood.

3. An impulse is a constant neighborhood followed
by at least one but no more than N points
which are then foliowed by another constant
neighborhood having the same value as the
first constant neighborhood. The two boundary
points of these at most N points do not have
the same value as the two constant neighbor-
hoods.

4. An oscillation is a sequence of points which
is not part of a constant neighborhood an edge
or an impulse,

0f particular interest is the class of signals
that can pas. through the filter unchanged as well
a5 the class of signals that are completely re-
moved by filtering. Assume that an L-length sig-
nal is filtered with a 2N+1 window. As noted pre-
viously, we always append to the beginning of the
signal an additional N constants equal i1n value to
the first wample of the signal. Simitarly, N con-
atunt points gre appended to the end of the (-

#Ilt has recently come to our attention that §,
fyan has proven a version of this theorem in an
unpublished manuscript, We have not seen a copy
of this manuscript at can only speculate as to its
contents.,

length signal. By doing this, we assure that when
the initial signal's first or Last sampte s n
the center of the window, the median filter output
equals this sample value. For a signal to pass
through a median filter unchanged means that the
central sample value for each window position is
itself the median of the samples within the win-
dow.

Consider a signal unchanged by median filter-
ing. Assume that the window increments from sam-
pte to sample moving from left to right across the
signal and that the window i$ now centered at the
second signal sample of the original signal. We
know that the N points to left of center have the
same constant value. If they equal the value of
the center point, then it (the center point) must
be the median. If they are Less than the vatue of
the center point, then the N points to the right
of center must be all greater than or equal to the
central value. If the N points to Lleft are
greater in value than the central point, then the
N points to the right are all less than or equal
to the center value. Thus note that the leftmost
N+2 points in the window form a monotone sequence
of points. Increment the windown another sample
to the right, so that the window is now centered
at the third signal sample. The leftmost N+1 sam-
ples in the window form a monotone sequence. As-
sume that the N leftmost points in the window are
not greater than (respectively, not less than) the
center point. Then, since the center point is the
median value of the points in the window, the N
rightmost points in the window must be not less
than (respectively, not greater than) the center
point. Thus we see once again that the Lleftmost
N+2 points in the window foram a monotone seguence.
Increment the window another sample to the right,
By applying the same argument as before, we again
find that the N+2 leftmost points in the window
form a monotone sequence. Indeed, a straightfor-
ward inductive argument proves that the Leftmost
N+¢2 points in the window form a monotone sequence
regardless of the window position. Recalling that
the appended signal has N constant points appended
to he right of the original signal, we see that
the appended signal is such that any consecutive
N+2 points must be monotone. Thus a signal in-
variant to median filtering must be such that the
appended signal contains only constant neighbor-
hoods and edges.

Now assume that the appended signal contains
only constant neighborhoods and edges. If the
center of the window is at any signal sample, then
the points in the window are either monotone or
non-monotone. If the points are monotone, then
the signal sample at the center of the window is
not changed by the median filter. It they are
non-monotone, then the window must be centered on
a point in the constant neighborhood shared by two
edges. Of the 2N+1 points in the window, at least
N+1 of them are equal to the center poynt, anu
thus the center point is wunchanged Dy median
filtering.

These observations are formalized in the ftol-
lowing theorem.

Theorem 1. Given a length L, K wvalued, sequence
To be median filtered with a 2N+1 window, a neces-
sary and sufficient condition for the signal to be
invariant under median filtering is that the ap-
pended signal consist only of constant neighbor-

hoods and edges”.




The following corollary is a direct result of this
theorem.

Corollary. Ffoir a median filter invariant signal
to contain both regions of increase and decrease,
the points of increase and decrease must be
separated by a constant neighborhood (at least N+1
consecutive identical points).

As a result of this theorem it is possible to

construct signals that are invariant to median
filtering. Also, given the space of all Llength-L,
K-vatued signals § it is possible to identify all

those signals invariant to median filtering with a
2N+1 window. We will call these signals the roots
of the filter, and this set of signals is denoted
as RN‘ Note that RN S for any N and that we
have the following lemma.

Lemma 1: for an L-length K-valued set of signals

S, the root sets RN are nested such that ...
RNH Ry oo Ry = S.

Proof. 1f a signal is invariant to a filter of
window Llength 2(N+1) + 1, then each neighborhood
of N+3 samples is monotone. Consequently each
neighborhood of Llength N+#2 15 monotone and the

signal is invariant to a filter window of
2N+1;  i.e. RN01 RN'

that a window of length 1 reproduces any signal
exactly upon filtering because the median value of

Length
It is trivial to verify

a set containing just one point is the value of
that point; thus, RO = 8.
We have estanlished that for a given filter

window 2N+1 and a signal set S, there exist a root
set RN of signals invariant to filtering. For a

given L-length signal s we represent the median
filtered version of s by fN(s) for a 2N+1 size

@)

window. We represent by f“ (s) the twice fil~

tered signal:

@
fN

We define f;")(s) as the n-times filtered signal:

(n) = (n=1)
fN (s) = fN[fN

(s) = fN[fN(s)].

(s)].

Ifs = 1N(s), then s is a root of the filter, We

next prove that for any signal s there exists an n
such that f;")(s) 2 r, where r is a root,

Suppose we are given an L-length signal s that
1S not a root. Recall that N constant points are
appended to the beginning of the signat. B8y con-
struction, the first original signal point is the
median of the interval for which it is the central
point. As we slide the window from Lleft to right
across the signal, the first point to move (i.e.
where the window's central point is not the medi-
an) must, by definition, be either a point con-
tained in an impulse or oscillation. Suppose it
is an impulse. B8y construction an impulse has two
constant neighborhoods of equal value on either
side, and every point in the impulse 1is filtered
to this constant value by one pass of the filter
window. Suppose the first point to be moved is$
contained in an oscillation. Let p be the Last
point unatfected by the median filter, and assume
the filter is centered at this point. Then the

Leftmost N+2 points must be monotone as seen in
the proof of Theorem 1. Assume without loss of
generality that they are monotone nondecreasing.
Assume that the window 1is now centered at the
point p+¢t. By hypothesis, this point must change
in value. Recall that the Leftmost N points are
not greater in value than the center point. It
the N rightmost points were greater than or equal
to the center value, then this value at p+1 would
be the median. Thus, at Least one point to the
right of center must have a value less than that
of ptl. Thus there are N+1 points in the window
not greater in value than the center point, and
the center point changes., Therefore it changes
downward in value. Note that it can never achieve
a value Lless than the value of the immediately
preceeding constant neighborhood because there are
always at least N+1 points contained in the window
including p+1 itself whose values are all greater
than or equal to the constant neighborhood.

S0 we see that the first point that changes
under filtering is preceded by but not necessarily
adjacent to an invariant constant neighborhood,
and the point is contained either in an impulse or
oscillation. We also see that upon filtering, the
value of this point moves closer to the value of
the constant neighborhood. There are two possi-
tilities: the value of point p equals the value
of p+1, or the vatue of point p+1 is greater than
that of p. In addition, it can be shown that the
value of point p+1 is greater than the value ot
point p. Suppose that the two points have the
same value. As the window increments from posi-
tion p to p+1 one point moves out of the window on
Left side and another point moves into the window
on the right. The point that moves out on the
left has a value less than or egual to that of
point p+i. Because we know that the filtered
value of p+1 is Less than the original value, the
point that moves 1in on the right side must also
have a value less than that of p+1, otherwise the
value of p+1 cannot decrease. If the value of
point p+1 is the same as that of p then there
remain N points in the window less than or equal
to the value at p+1 (and at p) and also N points
in the window greater than or equal to the value
at p*1; consequently, point p+!1 is the median and
would not change, Thus, the value of the first
point to change must be greater than its predeces-
sor.

Recall what is known concerning the Llast con-
secutive point p that is invariant to tiltering.
The N points in the window to the (eft of the
center point p are all less than or equal to p in
value; the N points to the right of p are all
greater than or equal to p in value., When the
next point p+1, is centered in the window there
will be at least N points less than or equal to p
in value and at Least N+! points greater than or
equal to p in value. Therefore the median value
can not oe less than the value of p. For conveni-
ence we summarize this as the following.

Jbservation 1: The first point to change value
during a median filtering operation must be on the
opposite side of its predecessor than the most re-
cent constant neighborhood, and this point upon
filtering moves toward its predecessor but does
not move past its predecessor.

Continuing in this fashion, consider the point
following p¢1; that is, p+2. Note that the value




of p+2 is greater than or equal to the value of p.
As the window is incremented to the right, p+2 is
centered in the window and a point moves out of
the window on the left. A new point enters the
window on the right. The value of this point must
be either greater than that of p or iLess than or
equal to the vatue of p. If it is less than or
equal to the value of p, then there are at Lleast
N~1 points in the window with values lLess than or
equal to p and at least N+1 points with values
greater than or equal to p. Consequently, p+t2 can
not be filtered to a vatue less than p. If the
value of the new point is greater than that of p,
then 1trivially, the filtered value of p+2 can not
be Less than that of p. The same reasoning can be
applied to points p+3, p*4, ..., p*N. For con-
venience, we summarize this as the following.

Observation 2: After filtering, the N rightmost
points in the window centered at p must all have
values equal to that of p or on the opposite side
of the value of p than the most recent constant
neighborhood.

Consequently the value of p is always invariant
to median filtering, and, in addition the same ar-
gument applies to any other (invariant) point to
the left of p. Also, the point p+1 has one of two
possible filtered values, as follows.

Observation 3: Of all the values in the window
centered at p+1, the filtered value of p¢l is ei-
ther the value of p or the closest value to p on
the opposite side as the most recent constant

neighborhood.

3y using an argument similar to that )ust
presented we reason that the filtered values of
pt2 through p+*N are greater than or equal to the
filtered value of p#1. If the filtered value of
ptl 15 the same as the value of p, then point pe+1
15 invariant to filtering on the next pass of the
window because it is not greater than the value of
D. Suppuse, however, that the filtered vatue of
point p*l is greater than that of p. wWe must re-
examine the pre~filtered point values. When p¢l
is 1n window center, the N+1 rightmost points must
all have values greater than that of p including
the rightmost point p+N¢l1, As 3 result, when
p*N+1 1s in window center, the leftmost N+1 points
huve values greater than that of p and the fil-
tered value of peN+¢1 must be greater than that of
p. Consequently, on the second pass of the win-
dow, after all the points have been filtered once,
when point pel is in window center, the N Leftmost
points are all Less in value than that of p+l1, and
the rightmost N points all have values greater
than or egual to that of p*1. Thus, p+! is the
medran of the window and does not change value
upon the second filtering. This yields the fol~-
lowing.

Observation 4: The tirst point to change value on
a median !Tltering operation remainy invariant
upon additional filter passes.

when the obuervdation is made that the median
tiltering operation 15 independent of «hether the
vindow moves from right to left or left to rignt
41r0ss the signal, we see that the properties ot
the first point to change value apply altso to the
Last point 1n the signal to change vaiue. Because
of the appended constant valued points to the
front and back ot the L-length signal, the first
and Last signal points are invariant to filtering.

Thus at most %(L-Z) window passes are required to

reduce the signal to a root. As a result of the
previous discussion we have the following theorem
for an L-length signal.

Theorem 2. Upon successive median filter window

passes any non-root signal will become a root
after a maximum of %(L-Z) successive filterings.

Also, any non-root signal can not repeat, and the
first point to change value on any pass of the
filter window will remain constant upon successive
window passes.

To illustrate this characteristic of median
filtering consider the binary valued L=8 signal of
Fig. 2. This signal will be repeatedly filtered
by wuse of a window length of 3 samples. The ap-
pended constant terms are marked with x's. wWe see

that %(L-Z) = 3 window passes are required to

reduce this signal to 2 root

. . ] e X
X o ° . - Oriqinal Signal
. . o o X
X o o . . After e Futter Paes
. e o o X
X o o o . Atrer Ton Pasnr

X o ¢ ¢ o Aftir Thieo Pan
A Ront

Fig. 2 Result of Repeated Median Filtering

To this point, it has always been assumed that
the signal is quantized to K Levels for an L-
length signal this requirement is not needed be-
cause an L-length signal can have at most L dif-
ferent values even if the signal samples are not
quantized to specitic values. Thus, we can always
bound K from above by the value of L and all
results stated in this paper apply to unquantized
signals.

111. Discussion

The development in the preceeding section suy-
gests a number of interesting results. first, we
note that every signal in the space of signals, s
¢ S, can be filtered to a unique root with a
bounded number of repeated filterings. Thus, the
elements of the root set RN partition S as 1llus-

trated in F1g. 3 where it is shown how the signal

space

fFig. 1. Partition of the Signal Space S by
Sight Roots.
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is partitioned by a root set with eight elements,
where wupon repeated filtering every signal s ¢ S3

is filtered to root g« R, and so on; e will

N
catl S; the ancestor set of root - If a signal

s requires | filter passes to reach the root r3 we
say that s is an L-th generation ances!or of ry-
We know from Theorewm 2 that any root has at most
%(L-Z) ancestral generations and we know that the

root of a signal depends on the filter window
svze, i.e., a root for a window of size 3 may not
ve a root for a window ot size 5, although a root
for a size 5 window is always a root for a size 3
window. In a loose sense, median filters are a
type of lowpass filter with an increasingly narrow
passband as the window size increases.

The application of median filtering to signal
smoothing problems introduces an interesting twist
to the concepts of signal and noise. A median
filter has no design parameters other than window
size. It can not be designed to accomodate spe-
cial signal or noise characteristics. In the ex-
treme case a filter can completely remove a signal
component Lleaving only noise. It seems desirable
that a noise-free signal be a root signal in order
that it is invariant to median filtering. If the
root signal has added noise, then it may or may
not be possible to remove the noise by filtering.
Noise that can be filtered is noise that changes
the signal in such a way that the noisy signal is
an ancestor of the same root. This noise can be
removed with repeated filtering. However, if the
no1sy signal is now the ancestor of a different
root, then it can not be removed by repeated
filtering, This property of either perfect signal
recovery or false signal recovery points to yet
another appitication of median filtering - channel

coding. for this application the root set R
corresponds to an alphabet set. The transmitted
code can contain either roots or ancestors. In
either case decoding is accomplished through re-
peated filtering.

In this paper we have established several fun-
damental theoretical properties of median filters.
We have presented necessary and sufficient condi-
tions for a signal to be invariant to median
filtering and we call these signals roots of the
filter., We have also shown that repeated filter-
ing of any signal results in a root signal and
have established the maximum number of filtering
operations required to reach a root. As a result
of the theaory developed in this paper a better
understanding of the potential applications as
well as the Limitations of these filters is
achieved.
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ROOT-S|IGNAL SET ANALYSIS FOR MEDIAN FILTERS

G. R. Arce and N, C. Gallagher, Jr,
School of Electrical Engineering
Purdue University

West Lafayette, Indiana 47907

ABSTRACT

Invariant signals to median filters are called roots of the signal.
A tree structure for the roots of a binary signal is obtained. Showing a
state propagation property from which a state diagram is obtained. The num-
ber of roots R{n) for a signal of length n and a window filter 2*s-1 is ex-
actly represented by the difference equation R(n)=R(n=1) + R(n-s). A general
solution is obtained in a Z domain approach, and in a transformation ap-
proach.

SUMMARY

Many properties of a median filter may be described in terms of the
so called root signals. A signal invariant to the filter is called a root.

In this paper, a tree structure of the roots is modeled and implemen-
ted graphically. This structure has very attractive properties such as sym-
metry as well as a predictable pattern of state propagation. Each state in
the tree generates other states, not necessarily of the same kind; then, the
new states generate another group of states and so the tree structure
follows. The repetition of states in a tree is a function of the length of
the signal, and the number of different kinds of states is a function of the
filter window size., At each stage along the tree, each state yields a num-~
ber of roots.

On the binary signal we obtain & different states, states A & D yield
2 roots, and states B & C yield ! root each. The relation for the number of
roots is: R(n+1) = 2*(A(n)+D(n)) + B(n) + C(n), where n represents the sig-
nal length., For the binary case the difference equation for R(n) can be
shown to be: R(n+s)=R(n+s-1) + R(n), where s depends on the window size. The
solution of the difference equation is obtained with a state equation appro-
ach. Let: R(k) =X)1(k);R(k+1)=X2(k);R(k+2)=X3(k),...,R(k+s~1)mXs(k). By sol-
ving the vector state equation X(k+1)=[A]K x(k) we obtain the solution:
R(k)=[ 1 000 ... 0]X(k). Therefore a solution to [A]k is necessary, where
the A matrix has the Torm of a bottom companion matrix, The characteristic
polynomial for the A matrix of size s by s is: f(X)=XS - x5=1 =}, Using
Sturm's theorem, we can see that the characteristic function has distinct
eignevalues only, Two different approache? are used to obtain AX, One ap-
proach used the Z domain, AK = Z=1{(z1-A)"" 2}, the other approach uses a
similarity transformation:XsMQ where AX = M Dk M} and 0 = ﬂf' AM, A
closed form solution is then obtained showing that the number of roots for a
signal of length k is a linear combination of the eigenvalues raised to the
kth power. The Z domain approach yields the result:

k
1 |=2e] o ' 2571 (z-1),2572(z-1),...,2(2-1) ,2| x(o)
R(k ) = lim = S ———— -
o k dz s .5=1
29 O -2 -1

where k_is a specific signal length, In the paper we analyze in detail ev-
ery point touched in this summary,
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Some Properties of Uniform Step Size Quantizers

JAMES A. BUCKLEW, MEMBER, {ERE, AND NEAL C.
GALLAGHER, JR., MEMBER, IEEE

Abstract—Some properties of the optimal mean-square ervor unlform
quantizer are trested. It is shown thet the mean-square error (mac) is given
by the imput variance minus the output variance. Fwrthermore
lum,, _mse/(43/12) > |, where N is the number of output levels and A (»
fusction of Af) is the step size of the uniform quantizer, with equality
whes the support of the random variable is contained iu a (inite interval. A
class of probability deasities is given for which the above limit is grester
than one. It is shown that lim, . N3 mse=(b—a)}/12, where (b—a) ls
the messure of the smallest interval that contains the support of the lnput
random variable.

In many problems ansing in the evaluation or design of a
control or communication system it is necessary to predict the
performance of a uniform quantizer. Uniform quantizers are of
interest because they are usually the simplest to implement and
because many noise processes in physical systems may be con-
sidered as the noise produced by a uniform quantizing opera-
uon. For example, the final position of a stepping motor or the
line drawn by the pen of a computer plotting device under a
continuous control may be considered to be corrupted by a
uniform quantizing operation.

Because of the importance of these quantizers several authors
have considered their properties. Widrow (1} shows that under
certain conditions the quantization noise is uniformly distrib-
uted. Gish and Pierce [2] show that asymptotically the uniform
quantizer is optimum in the sense of minimizing the output
entropy subject to a fixed mean-square error. Morris and
Vandelinde {3] show the uniform quantizer to be minimax.
Snipad and Snyder [4] later extended Widrow's work to give a
sufficient condition for the quantization error to be uniform and
uncorrelated with the input.

We now prove some additional properties of these quantizers
when they are designed to minimize the mean-square error
(mse). We may write down the analytic expression for the
quantizer characteristic g(x) as

a, if x<q,
g(x)= a+(i+ 1), ifg+id<x<qg+(i+1)4, m
forimQ,--- ,N-3
a+({N-1)4, ifx>(N-2)A+gq,

where N is the number of output levels. We sec that if x is less
than g or greater than ¢+(N~2)A, x is truncated to a or
a+(N - 1)4, respectively. An important parameter of interest is
the measure of the nontruncation region, (N - 2)A.

The quantizer charactenstic (g(x) must be optimized with
respect to three parameters, ¢ which fixes its position along the x
axis, a which fixes its position along the y axis, and A (a function
of N) which specifies the step size of the quantizer. Because it
makes little sense to speak of minimizing the mean-square error
of a random vanable with infinite variance, we will always
assume [ * x%f(x) dx < 0.

Property |: The minimum mean-square error uniform quan-
lizer preserves the mean of the input random variable.

Manuscript received Apnl 23, 1979; revised October 25, 1979. This work
was supported by the Air Force Office ol Scientific Research under Grant
AFOSR 78-3605. This paper was presented at the 1979 Alierton Conference
on Infor S and Sy M llo, 1L, October 10-12, 1979.

J A Bucklew was with the School of Electncal Engincenng, Purdue
University, West Lafayette, IN. He 13 now wmith the Electnical and Computer
L.ngineening Department, University of Wisconsin, Madison, W1 53706.

N. C. Gallagher, Jr_is with the School of Electncal Engineering, Purdue
University, West Lalayette, IN 47907,

Proof: Suppose g(x) is the optimum uniform quantizer.
Then

3 [(x=80)+ (x) drlwo=0, @

which implies
[ ofx) dx= [ g()f(x) . G)
O

Property 2: For the optimum uniform quantizer
a=g—-A4/2.

Proof: Suppose g(x) is the optimum uniform quantizer.
Then

0= 2 [(8(x~0~ ) x) dl,og @

-9 N3 . 2 fgrer(ivh)a q+e
g[ Eo (a+(i+1)a) fﬂnm f(x)dx+a’f_m f(x) dx

+e+(N-2)A

+(a+(N~- |)A)’j'°° f(x) dx]
q
=3 +e
—2[ Nz (a+(i+ I)A)f'“’““’“xj(x) ¢x+af' xf(x) dx
im0 q+a+id -a

+@+(N-1a) [~ XI(X)d’r]I.-o )
q* 2)a

«+(N-

-3
- Nz (a+(i+ I)A)z(ﬂq+¢+(i+I)A)—f(q+¢+iA))
i=0

+a¥f(q+ )~ (a+ (N~ l)A)’f(q+¢+(N—2)A)]
—2[ N=3(a+ G+ D0+ e+ G+ DO+ c+(i+1)2)
~(q+e+id)(q+e+iA))+a(qg+)f(q+¢)
—(a+(N- l)A)(q+¢+(N-2)A)j(q+¢+(N-2)A)]|,-o.
(6)
Simplifying this expression we obiain
N-2
(A+2a-2q) I f(q+iA)=0.
inQ

The solution X7 }(g+iA)=0 corresponds to a trivial solution
because without affecting the mean-square error, we may always
arbitrarily set (g +iA)=0,im0,--- ,N—2, Hence A+2a—-2¢=0
which is what we wish to prove. a

Property 3: The mean-square error of an optimum uniform
quantizer is given by the input variance minus the output vari-
ance.

Proof:
mse = £(g(x) - x)’
= E(x*)~2E (xg(x)) + E{ 8(x)*}. M
We wish to optimize this expression with respect to A. Using
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a=gq—A/2 we first obtain

B3, (o (i )oY [0 Mo e
wca-arnf atorac{os (5 1)
.L:N—mxf(x) dx (8)

and

el e
+( - %)’f_:f(x)dx+(q+(,v_ %)A)z
S0 ®)

Substitute (9) and (i0) into (8); take the partial derivative with
respect to A and set the result equal to zero. We find that

E(xg(x)) +qE(g(x)) = E{g(x)’} +qE(x),  (10)
but E{g(x))=E (’x) for the optimum quantizer. Hence
)

E{xg(x)}+ E{g(x)’} and
mse=E {x?} - E{ g(x)?) 1))
which together with Property | completes the proof. O

Sripad and Snyder [4] show that a sufficient condition for
x — g(x) to be uniform and uncorrelated with x is

2wn . [ 2un
o.(5)=o(F)-0
where ¢,(w) is the characteristic function of the input random
variable x and ¢,(w)= dé,(w)/dw. Frequently in the analysis of
a system corrupted by a uniform quantizing operation it is
assumed that the quantization noise is uncorrelated with (or
sometimes independent of) the input. The next property demon-
strates that this cannot be done with the optimum uniform

quantizer.

Property 4: Suppose the input probability density is
Riemann-integrable. Then the quantization noise is never uncor-

related with the input lor the optimum uniform quantizer.

Proof: Without loss of generality assume E(X)}=0.
Suppose the converse holds. This implies
E((x—g(x))x)=E(x?) - E{g(x)x} =0, 13
but from Property 3

fornm=l22--, (12)

E(xg(x))=E( g(x)'}.
E(x?)- E(g(x)'}=0. (14

But, again from Property 3, the left side of (14) is the mean-
square error. This is a contradiction, since a Riemann-integrable
probability density function necessarily implies that the mean-
square error for any finite number of output levels is greater
than zero (i.e., x) has no delta functions). 0O

We now state an obvious property which will be used in
several subsequent proofs,

Property 5: The mean-square error for the optimal uniform
Quantizer approaches zero as the number of output levels ap-
proaches infinity.

Proof: The mean-square error is given by E{(g(x)- x)}).
and for this to approach zero it is sufficient that g(x) approach x
in mean-square. Consider a quantizer with the parameters
A=1/VN=2 and g= -(N-2)A/2. The width of the non-
truncation region is (N ~2)A= VN -2, Hence as N becomes
large the width of the nontruncation region approaches infinity

and delta approaches zero. It is a simple matter to show tha
hmy, o g(O= 1 evervwhere, Sace (gin) Y o v A and
§ "ot + A1) dy < o0, this imphies

l‘ ao _ 2 - o . _ 2 -
Ngnwj_”(gm x)f(x) dx f.,,«"l“..,““’ *f(x) de=0

by the Lebesgue dominated convergence theorem. s quan-
tizer is in general suboptimal, which implies that an optimal
quantizer must have even smaller mean-square error for each N,
and hence its error must also go to zero. a

As a consequence of the above property, it is easy 10 show
lim, A =0 for the optimal uniform quantizer.

Let (a,b) be the smallest interval such that [2f(x) dx=1.
Note that either ja] or {5 may be infinite.

Property 6: Suppose f(x) is Riemann-integrable. Then. for the
optimum uniform quantizer, limy_, (N -~2)A=b-a.

Proof: Suppose limy_ (N—-2)A<b-a. This implies that
for N sufficiently large we are always truncating some finite
amount of probability mass, and so the mean-square error
cannot go to zero. This contradicts the previous property, Hence
limy_ o (N-2)A>b~a.

Suppose limy _, (N ~2)A >b ~ a. This makes sense only if the
random varigble is of finite support. So for N large enough there
is no truncation error. In the Appendix it is shown that for a
family of quantizers with no truncation error lim,_ . mse/
(A2/12)= 1 for a Riemann-integrable density function. So, for N
sufficiently large, (N -2)A>C >b—a < 2. Then

I= lim % < lm —————"L—.
N 83712 Nw CI/IAN-2)

or
1 c?
im (N=-2)'mse> —-. (15
N-as30 l2
Consider a suboptimal quantizer whose input intervals are ob-
tained by dividing the interval (a,b) into N ~2 equal subinter-
vals. Denote the mean-square error of this quantizer by mseg;p
and its step size by Ag=(b—a)/(N —2). This quantizer has no
truncation error and hence

I= lim mSesus lim msCsus

Now 83/12  Now (b-a)/12(N=2)""
~a) 2

(b=a)y . C ¢ tim (N-2)'mse.(16)
IZ Iz N.am

which is a contradiction since we have found a suboptimal

quantizer with a better mean-square error than the optumal one.

0

Bennett [5) shows that the mean-square error of a uniform
quantizer is approximately A2/12, assuming that the truncation
error is negligible. This is not always the case and in the
discussion we will give examples for which Bennett's approxima-
tion may be very poor indeed. There are some special cases
where Bennett's approximation does hold. The next property
deals with one such case.

Property 7: Suppose the density function is Riemann-integra-
ble and b~ a< . Then for the optimal uniform quantizer we
have

Jim (N -2 msesup=

. mse
lim
Neoo A2/12
Proof: From Property 6 limy_ (N ~2dg=b-a< o
where 4g is the optimum A. We may design a suboptimum
quantizer by dividing the interval (a,8) into N -2 equal subin-
tervals and using these subintervals as the breakpoints for our
quantizer. We denote the mean-square error associated with this
quantizer by mseg;;n and the step size by Ag = (b—a)/(N ~2).
This quantizer has no truncation error. Hence from the Appen-
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dix $.000 —
msesup |
lim ———= =], 17
N—oo A}/lz an
Now
. N-—
hm 35 o jim V28 Jim (N -2)As o
Nom 80  New (N—2)4p Jun (N-2)a, '
- 00

implying limy_.,43/A3 = |. For any quantizer whose nontrunca-
tion region covers the support of the Riemann-integrable density
funcuon in the limit as N upgroaches infinity, we show in the
Appendix that limy_ ,mse/(8°/12) 3 1. This bound is arrived at
by ignonng the truncation error and is true for density functions
with finite or infinite support. Then

mSESUB _ m ( m“sun) A}/IZ)
N-soo

li —
Now 8312 ai/12 \ a/12
2
-( lim ———“‘:“‘") lim Af/'z =1, (18)
No AL/12 J\ N~w A3/12
but
f= lim ToSsus DformmaL | (19)
Naw AM/12  New  AY/12
or
hm _____“"°°'"W\L-|,
N—wo A},/l2
which is what we wanted to prove. (]

In the above property we have shown that the truncation error
is negligible for the optimum uniform quantizer, if the density
function has finite support. This is not true, however, for arbi-
trary uniform quantizers on these densities. It is easy to design a
sequence of uniform quantizers (indexed by N) such that
limy_ mse=0, limy_ ,A=0 but limy_, ,mse/(A2/12) 1.

Zador [6) shows that if Ax) is Riemann-integrable and
E{x3*%) < oo for some & >0 then for the optimal nonuniform
quantizer

lim N2 mse=|ifll,/5/12
N—a

where || f]l,,5 1s the L,,; norm. This result show that for the
nonuniform quantizer the mean-square error decreases like
1/N? for large N. Is there a similar property for the optimum
untform quantizer? Not always.

Property 8: Suppose f(x) 1s Riemann-integrable. Then for the
optimum uniform quantizer limy_ N - mse=(b-a)?/12.

Proof: I{ b-a < oo then
2
> lm S N2
Now A/12  N-w (N-2)'A2/12
- hm(N—Z)’mse
limN3a%/12
but (N - 2)’A?-s00 which implies lim, _, (N — 2)’mse—oo.
If b—a< oo then my_  mse/(8°/12)= ] or limy_ (N -

2)mse = hm,_ N’mse = (12)~! - hm(N - )4’ = (b - a)'/12
which completes the proof. a

(20)

Discussion

We should note that not everyone uses our definition of the
optimum uniform quantizer. For example, Pearlman and Senge
{7] have published tables of the optimal uniform Rayleigh quan-
tizer. For their computations they add the constraints a =0 and
q=4/2.

.000 -4

-£.000 Y T T T
1.000 2.000 $.000 4.000 §.000 8.000

Ioglo(N) -

Fig. 1. K (sold line) and D(N) (dashed line) plotted as a functuon of
logiAN).

It is interesting to note that Properties | and 3 are also shared
by the optimal nonuniform quantizer as shown in (8]. As a
further consequence of these two properties we find that, for the
N =2 case, the optimum uniform quantizer and the optimum
nonuniform quantizer are identical.

Property 7 is one of the more interesting properties proved in
this correspondence. A common approximation to the mean-
square error of a uniform quantizer has been A?/12. Consider
the class of density functions given by

(|+%)
(+x***’

We casily see that §=Sup(e: f x?*{x) dx < ). By straight-
forward minimization techniques one can show for this class of
densities that

Ax)=

— 00 <x < 00.

. mse 2
FaAreyiT ik &

Property 8 is of interest because it sets forth a basic difference
between uniform and nonuniform quantizers. For the nonuni-
form quantizer we can expect the mean-square error to be of the
order of 1/ N2 We can expect this rate of convergence to zero to
bold for the uniform quantizer only if the probability density has
finite support. As an example consider the Gaussian case. The
Gaussian probability density is of infinite support yet has ex-
tremely light tails. We may write down an expression for the
mean-squere error of a Gaussian random variable and solve for
the optimum A for a specific N. Let us set A=20K/(N-2)
where KX is a function of N and o is the standard deviation. We
find that, for large N, K is given by the following transcendental
equation:

A ncnps)

Kl

-‘-‘/2[~-1+3(N_‘2) .

]
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This ¢quation may be solved on a computer by a standard
Newton - Raphson search. In Fig. 1 plot K as a funcuon of N for
values of N from 10 1o 1000000. The dotted line 1s put in as a
reference and is given by D(N)= 1.7In36N /=. It can be shown
that limy_ ,D(N)/K < 0. We conclude that the mean-square
error in a uniform Gaussian quantizer is of the same or larger
order than (In N)/N2.

APPENDIX

Consider a sequence of quantizers { gy{x)} %, where N is the
number of output levels, 4, is the step size, and /y is the
nontruncation region of g,(x). The measure of 7 is (N —-2)A,.
Suppose the input probability density function f(x) is Riemann-
lnlegra,\ble. and denote the support of f(x) by supp f. Define
msey = £ {(x - gu(x))).

Lemma 1: Suppose Iy—ssupp f as N—oo (ic.. if xEsupp f
then there exists an N, such that x€/, for n: Ny and
hmy_,4,=0. Then lim, _,mseN/(AN/IZ)a I. Furthermore if
supp fc Iy for all N and limy_ Ay =0 then
limy ., msey/(8%/12)=1.

Proof: Define
M,

[ K3

sup f(x)

1€(gridy.qrie )A,)

, = inf f(x)

re(grid,.g+(i+1)d,)

3
[}

Then
S e o) e

and

msey < 2 Mf”""’“”( (q+(:+2)4~))zdx+TE~

1=0 q+1dy
whese 1L, s the truncation error. Thus

A}v N - A N=-)
I m,A,, <msey < — 2 MA,=TE,.

=0 =0
If I, —supp f as N—oo and limy_ Ay =0 then, since f(x) is
Riemann-integrable, lim, _ ZN.0'mAy—1, which proves the
first part of the lemma. If supp fC /I, for every N then TE, =0
for every N, and since limy_ 85 =0 and f(x) is Riemann-inte-
grable, again %21 M,A, —1, which proves the second part of

the lemma. O
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SOME MODIFICATIONS TO THE MEDIAN FILYER PROCESS AND THEIR PROPERTIESt

T. A. NODES AND N. C. GALLAGHER, JR.
School of Electrical Engineering
Purdue University

W. Lafayette, IN 47907

ABSTRACT

some modifications of the median filter are given and their properties
are derived. In addition, some results for standard median filters are
given. It is shown that for non median nth ranked-order operations, re-
peated application of the operation will reduce any signal to a constant.
Also, it is proved that the output of a recursive median filter is in-
varient to subsequence passes by the same filter.

I. INTRODUCTION

Median filtering, a method of signal processing which is easily imple-~
mented on a digital computer, has been used with success in many applica-
tions. These applications include picture processing and speech process~

4
ing"z’s" where it is employed to smooth the signal. Further potentially
useful properties can be obtained from slight modifications of the median
process. We have investigated several such modifications and present the
properties of two of them. In section II, we Look at the nth ranked-order
operation, which is a generalization of the median process. In section
111, we study the recursive median operation, which incorporates previous
output values into the median decision process. Finally, in section IV we
introduce some other possible modifications to median filters. First, how-
ever, 3 review of the standard median filter is in order.

Median filtering is a discrete time process in which a 2N+1 points wide
window 1is stepped across an input signal (see Fig. 1). At each step, the
points inside the window are ranked according to their values, and the
median value (mid-point) of the ranked set is taken as the output value of
the filter for each window position. At both ends of the signal, N end
points are appended to allow the filter to reach the edges of the signal.

L-_ L point input signal .
x(*)

N appended Window at N appended

end points position A end points
g (2N+1 points) P
ose
[ ]

000 ad - | &7L,1A4P| | 'ﬁ *a L1 1 Leoe
A-N L-1 L

The output of the median filter, Y(A) is given by
Y(A) = the median value of {x(A-N),...,x(A=1),x(A),x(A+1),... ,x(A+N)}

- 8
- @

Figure 1: The Median Filter ™ T -

IThe authors gratefully acknowledge the support of the Air Force Office of
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Figure 2: Effects of window size on a median filtered signal

The value of the front endpoints is equal to the value of the first point
of the signal, and the value of the rear endpoints is equal to last point
of the signal. As an example of this process, consider Fig. 2. Here, a
binary signal of length eleven (them's represent the appended endpoints)
is median filtered by three different window widths N = 1 (2N#1=3) , N = 2
(2N+1=5), and N = 3 (2N#1=7). Notice, for the N=1 case, the signal is un-
perturbed, while for the N=2 and N=3 cases, the amount of structure in the
signal 1is reduced. A number of signal structures which can be used to de-
fine the properties of median filters, can now be defined.

A constant neighborhood is a region of at Least N+1 consecutive points
all of which are identically valued.

An edge is a monotonically rising or falling set of points surrounded
on both sides by constant neighborhoods.

An impulse is a set of N or less points whose values are different
from the surrounding regions and whose surrounding regions are
jidentically valued constant neighborhoods.

A root is a signal which is not modified by filtering.

Gallagher and Uises have shown that, while impulses are eliminated by
median filtering, constant neighborhoods and edges are unperturbed, and in
fact, only signals composed solely of constant neighborhoods and edges are
roots to the median filter. Again referring to Fig. 2, note that the sig-
nal is a root of the N=1 median filter but not for filters with N greater
than one., However, after one pass of the N=2 filter or two passes of the
N=3 filter the resulting outputs are roots of their respective filters. In
fact, Gallagher and Wise have also proven that any signal of length L is

reduced to its root after at most %J(L-Z) successive passes by any median

filter. Furthermore, any root of a median filter with a particular window
size is also a root of any median filter with a smaller window size.
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1I. Nth RANKED-ORDER OPERATIONS
If instead of the median valued point the value of the nth Largest point
in the filter window is passed to the output at each step, then a general
set of operations, called nth ranked-order operations, is found. More for-
mally, the output of the nth ranked-order operation at position A is

"

Y(A) the nth Largest vatue of {x(A=N),....,x(A=1) x(A) ,x(A+1) ... x(A+N)}
This set of operations includes the median filter case, naN+1, and many of
the properties for all values of n are similar to the properties of the
median filter. The non-median nth ranked-order operations have potential
applications in areas such as peak detection with impulse rejection and di-
gital A.M. detection (see Fig. 3).

The nth ranked-order operation can also be defined by the decision rule
used to select the output value at each step. For 2N+1 points inside the
window, the nth ranked point, x(a), is the point such that there are at
least n points with values Lless than or equal to x(a) and at least
2N+1=-(n=1)=2N+2~n points with values greater than or equal to x(a). A num-
ber of properties of the nth ranked-order operation can now be developed.

Property 1: A point, X(t), is unchanged (y(t) = x(t)) by an nth ranked-
order operation if two conditions are met. The point, x(t), is located in
a constant region, and x(t)'s position is restricted to Db+N-
a <t < c-[|N*1-n|+a) where a is any nonnegative integer of value less than
N+T- IN+1-n| and b and c are the positions of the two endpoints of the con-
stant region

Proof:

Assume that the two conditions given above are met. Now, let a =
0. The constant region must now extend to at least N points Left (de-
creasing t) of x(t) and |N+1-n| points right of x(t) for a total of at
least 1+N+|N+1+n| points of value x(t) inside the window. Further-
more, if a # 0, then the constant region will extend 'a' fewer points
to the left of x(t) but 'a' more points to the right, thus, mairtain-
ing a total of at lLeast N+1+|N+1+¢n| constant valued points inside he
window. This means that if N#1 > n  then at Lleast
14N+ |N+1=n| = 2N+2-n (>n) points inside the window have values equal

detected detected

| signa Nfﬁ signa

]

AM signal AM signal

(a) (b)

fFigure 3: A.M. Detection of a 5KHz tone on a 31KHz carrier and sampled
at 250KHz using an 8th ranked-order operation with a window
size of 9

(a) original signal (b) signal corrupted with impulse noise
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to x(t). Thus, x(t) meets the decision rule, and y(t) = x(t), Like~-
wise, if N#1 < n, then 1#N+|N+1-n| = n(> 2N+2-n), and again y(t) =
x(t).

Property 2: A rising impulse Like signal of width less than 2N+2-n points

or a falTﬁng impulse like signal of width Less than n points will be elim-
inated.

Proof:

i) If a rising impulse has fewer than 2N+2-n points, then no point
of the impulse can ever meet the second decision criterion, Thus, no
output points will have values equal to the value of the impulse.

i) Likewise, if a falling impulse has fewer than n points, then
no point of the impulse can ever meet the first decision criterion,
and no output points will have values equal to the vatlue of the im-
putse,

The definitions previously given for the median case may now be general-
ized for all the nth ranked-order cases.

A constant neighborhood is a region of at least N+#1+|N+1-n| consecu-
tive points alt of which are identically valued.

An impulse is a set of points whose values are different from the sur-
rounding regions and whose surrounding regions are identically
valued constant neighborhoods. If the values of this set of
points are greater than the surrounding neighborhoods, then the
impulse contains less than 2ZN+2-n points, and if the values of
the impulse are less than the surrounding regions, then the im-
pulse contains less than n points.

The definitions for the edge and the root are unchanged. Note that,
property 2 can be restated as "impulses are eliminated by nth order opera-
tions". Using these definitions, further properties can be developed. Due
to Llack of space, however, many of these properties are presented without
proof,

Property 3: Upon each pass of an nth ranked-order operation, every edge of
a signal will be moved to the left (advanced) by

sgnledgel *(n=N-1) points

+1 if x(t)
where sgnledge] = -1 i XD

Property 4:

Any constant region of 2N+2-n or more points surrounded by constant
neighborhoods of lesser values will be changed in width by 2°*(n~N-1) points
after being passed through an nth ranked-order operator.

Any constant region of n or more points surrounded by constant neighbor-
hoods of greater values will after being operated on be changed in width by
2°(N+1-n) points.

< x(t+1) For t ranging over all
>

x(t+1) positions in the edge

As can be seen from the above properties, for n greater than N+! the
maximum valued signal segment (or the minimum if n is less than N+1) which
is not an impulse tends to expand its coverage with each pass of a non-
median operator. Thus, under repeated operations, a signal tends to be re-
duced to a constant. That this is true for any signal is shown in the fol-
lowing properties.
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Property 5: Only constant signals are invariant to nth ranked-order opera-
tions if n is not equal to N+1.

Property 6: If n is not equal to N+1, then repeated passes of an nth
ranked~order process will reduce any finite length signal to a constant.

The output of an nth ranked-order operation at position Z is not influ-
enced by input points more than N points ahead (>Z+N) or N points behind
(<Z=N) 2. This suggests a method by which long signals could be segmented
and the ranked—-order operations on each segment carried out in parallel.

i) Append the start and stop points as usual

ii) Divide the signal into overlapping segments. Each overlap is
2N+1 elements wide,

iii) Perform the normal nth ranked-order operation independently on
each segement.

iv) After each operation replace the Last N points of each segment
(except the Last segment) with the N+2 through the 2N+1 points of
the following segment. Also, replace the first N element of each
signal segment (except the first segment) with the elements from
the 2N+1 through N+2 positions preceding the end of the prior
signal segment.

Now, the signal is the same as it would be had the processing been done be-~
fore the segmentation. Thus, further processing can now be done, or the
segments can be recombined to form the final output signal.

A signal may be formed from independent identically distributed, iid,
sample points of a random process. Such a signal would be formed if white
noise were sampled to form the input signal. For this type of signal,

results from order statistics6 may be used to obtain the first order dis-
tribution, Fy('), and the density, fy('), of the output of an nth ranked-

order operation. If the distribution, Fx('), and the density, fx(’), of
the input are known, then fy(') and Fy(’) are given by

_ (2N+1) ! n-1 - (2N+1-n)
fy(x) = D TONST=n T [%* (x) <1 Fx(x)) fx(x{] property #7
2N+1
- (2N+1) ! K - 2N+1-K
Fy(x) = KE% RTONFT=0T P X Q=F (x)) property #8

where 2N+1 is the window size.

Kuhlman and Hise7 will present further statistical analysis of the medi-
an filtering of independent identically distributed random processes in the
next paper. However, the above formulas can immediately be used to prove
that the statistical median of an iid process is preserved under standard
median filtering.

Property 9: A median filter, x(¢) + y(*); with an dinput of iid sample
points will transform the distribution of the input, Fx(') - Fy(°), sym-
metrically about 0.5. That is, for any £t such that Fx(l) - Fy(t), then
(1-F‘(l)) - (1-Fy(t)).

Property 10: The sratistical median of a signal of iid sample points is
preserved upon median filtering, or given & such that Fl(l) = 0.5, then
F (1) = 0.5.

) 4

Atso recall that if the density of the input, f‘(°), is symmetric, then the




mean, Ex{ )}, and the median are equal. Therefore, by properties 9 and 10,

/,/ the mean of an iid sample point signal whose density is symmetric is also
preserved under median filtering. However, in general, the actual median
point and the average of a particular signal will not be presarved.

Recursive Operations
Now consider replacing, at every step, the Leftmost N points in the mov-
ing window with the previous N output points, and apply the same decision
rule as was previously given for the nth ranked-order operation to obtain
the next output value. This produces a recursive nth ranked-order opera-
tion which can be more formally stated as follows.

Y(A) = the nth largest value of {Y(A-N),...,Y(A=1) X(A) XC(A+1) ... X(A+N))

Where X(A) and Y(A) are the values of the input and the output respectively
at position A. The properties of these operations are similar to those of
standard nth ranked-order operations. Most notably, they have the same set
of roots.

Property 11: A signal is invariant to recursive filtering if and only if it
is invariant to standard filtering.

Proof:
I1f a signal is invariant to an operation, X(®) + Y(*), then X(k) =
Y(x) for all k. Therefore, if a signal is invariant, then standard
and recursive operations use the same points in the decision rule, and
they must produce the same resulting signal.

However , the same signal will not in general reduce to the same root under
recursive and standard operations. This is illustrated by an example for
the median (n=N+1) filter case in Fig. 4. One may notice that under noisy
conditions, the recursive filter tends to maintain a higher correlation
between points in its output than does its non-recursive counterpart. This
is further illustrated 1in figure 5 which compares the autocorrelation of
the output for recursive and standard median filters with independant uni-
formly [0,1]) distributed 1input points. These autocorrelation functions
were obtained experimentally from a sequence of 2,200 random points. Thus,
these filters may be useful in cases where more stringent filtering without
a wider window is required.

! One of the most interesting characteristics of the recursive operations

’ ' Input signal

. [} L] [ e B B
1 L

e o
1t 1 ¢t ¢ 1 1 1 1 1

OQutput st pass
Standard Median Filter

~ 8
- @
L ]
[ ]
[
[ ]
[ ]
[ ]
~ 8
- »

e o o ¢ o o o o Output 2nd pass (root)
' AR U U W U U U U B G N A SN S ) Standard Median Filter

¢ ¢ 0 0 ® 0 0 o 0 0 00 & 0 Output st pass (root)
1 WS ST W S Y S N W WS D S W L S W Recursive Median Filter

[ Figure U4: Recursive vs Standard Median fi'ters with a window width of 5
(N=2)
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Figure 5: Autocorrelation function of standard and recursive
median filters for a window width of five.
is that the root of a signal for a particular recursive process can always
be found after the first pass of the operation. Recursive ranked-order
operations are therefore potentially useful in areas, such as peak detec-
tion and coding operations, which require finding the root of a signal
quickly. The following two properties prove this characteristic,
Progertz 12: Any signal will be reduced to a root after one pass of a re-
cursive median filter (n=N+1).
,' Progertz 13: If n#N+1, then the last computed output value of a signal be-
q ing operated on by a recursive nth ranked-order operation is the value of

the signal root for that operator. For n > N+1 (n < N+1) this value is the
value of the maximum (minimum) value to survive the first filter pass.

Other Functions
e In addition to the above mentioned operations, many more variations of
’ the median filter exist. Many of these other variations also have proper-
. ties which may be useful in signal processing. We have studiad severat
) such modifications and present some of them here. Many of these modifica-
{ tions were obtained by defining a set of signal roots with certain desir-

{ able characteristics; then, we developed an operation which would have a:
P many members of this set as possible for its own roots. Unfortunately, we
5 have not, as yet, found a systematic method of determining an operation

which will have any particular set of roots. Nevertheless, this approach
does appear to hold promise.

.
- - o = - e e e e i) e W o Tt s B e i e+ Ve b B i e 00r




AD-R121 294 THE ANALYSIS OF DESIGN OF ROBUST. NONLINERR ESTIMATORS
AND ROBUST SIGNAL C..<U)> PURDUE UNIV LAFAYETTE IN
SCHOOL OF ELECTRICAL ENGINEERING N C GALLAGHER

UNCLRSSIFIED 16 SEP 82 AFOSR-TR-82-8933 AFOSR-78-3685 F/G 12/1

END




320 =2f el
=== =

NEEE

m—m—ﬂm_uuuu.m

14

125

2
i

S T

P

-
e

Iy

-

e

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS ~1963 - A




in d —_ Median ‘ ]
~ T Fiicer [ Jot [—= ou
e o ®
L b input
" e L e o g

Output (window width = 3)

Figure 6: Example of a linear-median filter using a differentiator,
integrator pair and a median filter with a window width of

3 (N=1)

One modification to the median filter, which Tukey [1] and Rabiner [2]
have already utilized with promising results, is that of combining Linear
and median operations together. This allows one to greatly extend the num-
ber of available effects by utilizing some of the many linear operators
whose properties are already well known. As an example of such an opera-
tion, consider figure 6. Here, a signal is differentiated, median fil-
tered, and finally integrated. This operation has many of the same proper-
ties as a wmedian filter alone. However, due to the differentiation, any
slope of extent Less than N+1 points will be seen by the median filter as
an impulse and, thus, eliminated. Therefore, roots of this operation can-
not contain sharp edges.

Another method of varying the median filter is to weight some positions
of the window more heavily than others. This could be done by duplicating
certain positions of the window. If the center position, for example, were
to be weighted by three, then the output at position A would be given by

Y(A) = the median value of {X(A-N),...,X(A) ,XCA) XCA) ,o..  X(A#N)D

Yet, another modification would be to allow the value of a given position
of the window to be a Linear function of the points (possibly all of them)
inside the window. Thus, the output at position A would be

where m is the number of values used in the decision process. A simple ex-
ample combining the previous two modifications is given in figure 7. " In
this example, the points inside the window are first scaled by either =1,
0, or +#1; then, the center position is weighted by three, and the median
operation is carried out. The roots of this operation are zero or those
segments of periodicity &4 ((X(i) = X(i % 4)) which are symmetric about
zero. Thus, with some modifications, medi.n type filters can be designed
for a wide range of different roots, including some periodic type signals.

conclusion
In this paper, we have examined several variants of the median filter.
We have found that the set of nth ranked-order operations is a generaliza-
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Figure 7: Median filtering with a modified window function

tion of the median filter, and that they all have many similar characteris=-
tics. However, the non-median operators will, after repeated passes,
reduce any signal to a constant. In contrast, the recursive median process
retains the same set of roots as a standard median filter, though the same
signal may not reduce to the same root under both operations. However, the
recursive median filter reduces any signal to a root in just one pass, and
thus, may be useful where high speed root determination 1is required. We
have also reviewed some examples of other types of modified median opera-
tions, including combined Linear, median functions and filters with modi-
fied windows.
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ABSTRACT

A novel approach to the design of multidimensional quantizers is
presented. This technique is used to design optimum uniform multidimen-
sional quantizers that can be operated in real time. The quantizers are
easily implemented using zero memory nonlinearities, linear transforma-
tions and univariate uniform step size quantizers.

I. INTRODUCTION

There is considerable interest in the use of multidimensional quantiz-
ers for the encoding of analog sources. Much of this interest has been
generated from a theoretical standpoint. The multivariate quantization
results of 2ador [1] point to the advantages of multidimensional quantiz-
ers over univariate quantizers at high bit rates. Simply stated, the
results indicate that the optimum per sample distortion decreases as the
dimension of the quantizer increases. Therefore the potential exists to
improve the performance of digital encoders by replacing univariate quan-
tizers with multidimensional quantizers. ‘

Recently the design of optimum multidimensional quantizers has been
addressed. Computer algorithms for designing optimum quantizers of two
or more dimensions have been presented by many authors, such as Linde et
al [2]. The optimum quantizers are implemented using a search procedure
to choose, from a specified output set, the output that is the smallest
distance from the input. This implementation of the optimum quantizer
may be difficult or impossible to operate in real time at high bit rates.
In contrast the univariate uniform step size quantizer is a zero memory
device that can be operated in real time. To date the easy implementa-
tion and real time operation of the univariate uniform step size quantiz-
er has outweighed the theoretical advantages of wusing multidimensional
quantizers in the design of digital encoders.

In this paper we present a novel approach to the design of multidimen=-
sional quantizers called prequantization. The design is illustrated in
Figure 1 where a zero memory nonlinearity called a prequantizer precedes
a specified multidimensional quantizer.

MULTIDIMENSIONAL
——»| PREQUANTIZER QUANTIZER —

Figure 1. Multidimensional Quantizer Design using Prequantization.

Presented at the Eighteenth Annual Allerton Conference on Commun:cations,
Control and Computing, Uctuben 8-10,1980.




This design is similar in some respects to the companding design of
nonuniform univariate quantizers first proposed by Bennett [3]. In the
univariate case a nonuniform quantizer may be difficult to implement
directly. However, with companding we can design a nonuniform quantiz-
er using a uniform step size quantizer, an .avertible nonlinearity and
the inverse nonlinearity. Similarly, prequantization can be used to
design many multidimensional quantizers. Prequantization enables us to
design these quantizers using a simple multidimensional quantizer, which
is easy to implement and aperate in real time, along with a zero memory
nonlinearity. We illustrate the usefulness of prequantization with three
examples.

In a recent paper Gersho [4] considers the partitioning of optimum un-
iform multidimensional quantizers. He states that the optimum uniform
tuwo-dimensional quantizer is the hexagonal quantizer. In three dimen-
sions, Gersho argues that the truncated octahedral quantizer is very
Likely to be the optimum uniform three-dimensional quantizer. The analog
of the truncated octahedron 1is considered for four dimensions. The
resulting quantizer is not known to be optimal for four dimensions, but
does have a lower per sample distortion than the three dimensional trun-
cated octahedral quantizer. In this paper we present the designs for
these three quantizers using prequantization. In each case the design is
easy to implement and the quantizer can operate in real time. The real
time operation of these quantizers for high bit rates is a significant
result and demonstrates the important practical applications for pre-
quantization. We begin in section 11 with a discussion of the prequanti-
zation design procedure.

1I. PREQUANTIZATION

The design of k~dimensional guantizers using prequantization is illus-
trated in Figure 1. The design consists of a nonlinearity called a pre-
quantizer preceding a specified k-dimensional quantizer. The implementa-
tion of this design approach takes place in two steps. First a k-
dimensional quantizer meeting a specified criterion is chosen. In this
paper we are interested in real time operation, therefore we specify that
the quantizer be able to operate in real time. Examining Figure 1, we
require that the real time (specified) quantizer have the same set of
oytput values as the guantizer we wish to design. This is the only con-
straint placed on the choice of the real time quantizer. Free to choose
from all quantizers satisfying the output constraint, we choose a real
time quantizer that is easy to implement. The ability to exercise some
control over the choice of the k-dimensional quantizer is one of the ad-
vantages of this design procedure.

The second step in the implementation is the design of the prequantiz-
er. The role of the prequantizer is to complete the mapping of the input
variables into the desired output values, The real time k-dimensional
quantizer can be characterized by the mapping of its input space into its
output values. This mapping is usually described by a partitioning of
the input space, where all the input vectors contained within one parti-
tion are mapped into the same output vector. Since the real time quan-
tizer is chosen based only on its output values, we do not expect its
partitioning to be the same as the partitioning of the quantizer being
designed. It is the prequantizer which is used to obtain the partition-
ing specified by the desired quantizer design. The prequantizing func-
tion maps a partition specified by the quantizer being designed into a
partition of the real time quantizer that corresponds to the specifiec
output. Once the preguantizing function is determined the k-dimensional
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quantizer design is complete. We illustrate the design procedure with a
simple example.

Consider the design of a univariate quantizer with input x and output
R as described in (1),

?=nA;nA--£-_<_x<nA+%A, )

Using the prequantization procedure, we first choose a quantizer that is
easy to implement and has the same output set as given in (1). We choose
the uniform step size quantizer given by

$=ns ; na-S<y<na+i )

We now determine the prequantizing function that must precede the quan-
tizer in (2) to complete the design. Observe that quantizing y = x -'%

in (2) is identical to quantizing x in (1). Thus the prequantizing func-
tion 1is simply f(x) = x -<% and the design of the quantizer in (1) is

complete.

II1. HEXAGONAL QUANTIZATION

Gersho has argued that the optimum uniform two-dimensional quantizer
is the hexagonal quantizer. The design of a hexagonal quantizer using
prequantizing is given here. First we attempt to find a two-dimensional
quantizer that can be easily implemented and has the same set of output
values as the hexagonal quantizer. One quantizer meeting these require-
ments is a scaled version of the diamond quantizer given below.

Let the inputs to the two-dimensional quantizer be x and y. The vari-
ables x and y are first encoded into two new variables w and z by the
linear transformation,

w=x++3y
z22x -3y,

The variables w and z are quantized separately by unjvariate quantizers
with 2 uniform step size A. The outputs of the two-dimensiona! quantizer
are then obtained using the linear transformation,

R’%(Q*!)

(3)

1 4)
)= ——( - ).
V3

The position of this quantizer in the hexagonal quantizer design is shown
in Figure 2 and the partitioning of the scaled diamond quantizer is given
in Figure 3. Having chosen the two-dimensional quantizer given in (3)
and (4) we now turn to the design of the prequantizer.

The prequantizer must map the hexagonal region corresponding to each
output 1into the scaled diamond shaped region corresponding to that same
output. Consider the hexagonal partitioning shown in Figure 4.
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Figure 2. Prequantization design for the hexagonal quantizer.
The quantizer Q has uniform step-size A,

Figure 3. Partitioning of the scaled diamond quantizer.

Assume x is fixed and the pair (x,y) is contained within a given hexago-
nal partition. We now pose the question, does there exist a value x'
such that the pair (x',y) is contained within the corresponding diamond
partition for all values of y? This approach is illustrated with the
following example. Let x = Xy as shown in Figure 3 and let y be in the

a A
range - —— to

2V73 2vV'3
tizer output will be (0,00 for all input pairs in  the set
{(x1,y) 2y, Ly < yz). Similarly in Figure 3 we observe that the scaled

diamond quantizer output will be (0,0) for all input pairs 1in the set
((xz, y) : Y4 £y £ yz}. Therefore if Xy = f(x1), the quantizer in Fig-

ure 2 will behave lLike the hexagonal quantizer for all input pairs in the
set ((;1,,«) : - A ¢ y < 5 ). In fact, we can show that the quantizer

2v3I T T 2v3

. In Figure 4 we observe that the hexagonal quan-
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Figure 4. Partitioning of the hexagonal quantizer.

in Figure 2 behaves Like the hexagonal quantizer for atl inputs in the
set {(x1,y) : = @<y <= when Xy = f(x1). Repeating this example for

all possible values of X4, we obtain a prequantizing function that maps

the hexagonal region corresponding to each output into the scaled diamond
shaped region corresponding to that same output. The prequantizing func-
tion is given in (5).

A 1

f(x) =n 4 nd-4<x<nd+ i (5)
= 3x - (2n+1)-§, n%-&?ix_{(nﬂ)?-‘g.

IV. RESULTS IN HIGHER DIMENSIONS

In this section we present the design of the optimum Cor near optimum)
uniform quantizers for three and four dimensions. Each of these quantiz-
ers use in their designs a two-dimensional quantizer termed the diamond
quantizer. The algorithm for the diamond quantizer is as follows. Let
the inputs to the two-dimensional quantizer be x and y. The variables x
and y are first encoded into two new variables w and 2z by the linear
transformation,

wEyx +y

22 x -y, 6)
The variables w and z are quantized separately by univariate quantizers
with a uniform step size A, The outputs of the diamond quantizer are
then obtained from a linear transformation of the quantized variables &

and 2 given by :
-s-




aa.‘z(a»,z)

1 7
y = 2-(0 - 2.

‘The outputs & and ¥ will be multiples of 5— for all possible inputs. A

useful property of the diamond quantizer is that if either input x or y
is a multiple of f-, its quantized value & or y will be that same multiple

of -3». Therefore if the output of one diamond quantizer R is used as the

input to a second diamond quantijzer, the output of the second diamond
quantizer will also be R. Using this property we are able to design
quantizers of higher dimensions by cascading diamond quantizers. The
results of these designs are now given.

Gersho states that the truncated octahedral quantizer is very Llikely
the optimum three dimensional quantizer. This quantizer is defined by a
tessellation of a truncated octahedron specified by the set

{(x1,x2,x3) : Ix1|+|x2|+lx3| <%A : |"-;| <$-, i=1,2,3 ). The design of
this quantizer is given in Figure 5.

x1 PR | f‘X1,X3) Q > 21
XZ L .‘r -y 0 Q o )?2
X3 o= & > 0 — 33

Figure 5. The truncated octahedral quantizer design using
prequantization. ﬂo is the diamond quantizer.

The prequantizing function is given in (8) where e = |x3| mod(O,-g-). For

e <
f(x1,x3)=n-£- ;n-ﬁ--%*egx.'f_n%‘ff--e (8)
=x1--2-+e ;n%+-£--e_<.x1_<_(n+1)~3-
=x1+7§-e ;(n-1)2A-_5_x1_<_n%-£-+e.

A similar result is obtained for 7‘:-5_ e 5%.

The four dimensional analog of the truncated octahedral quantizer is
defined by the tessellation of the polytope specified by the set
A
((x1,x2,x3,x,’) : |x1|*|x2|+|x3|+|x‘| < 23 ; ll,-l <3 i=1,2,3,4). For
convenience we will call this quantizer the 4~d uniform quantizer. The
design of the 4-d uniform quantizer is shown in Figure 6.
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Figure 6. The 4-d uniform quantizer using prequantization.
GD is the diamond quantizer.

The prequantizing function is given in (9) where 2z = Ix3| mod(O,fo ,

w = |x4| mod(O,%) and e = z+w. For e 5'%7

flxq,xg,x,) = n 3 s dre<x, < ed-e )

xg~Ste;(mDS-e<x <) §

Xy *4-e; (D A<x < -1 4+e.
A similar result is obtained for ~§-_<_ e <A

A comparison of the normalized mean-squared error performance of the
uniform univariate and multidimensional quantizers is given in Table 1.
The results were obtained by computer simulation using 30,000 samples un-

iformly distributed (- %;%). The output alphabet of each quantizer was
assigned one hundred quantization levels per input sample.

Dimension Quantizer : nmse (x10™2)
1 uniform step-size 9.99
2 hexagonal 9.66
3 truncated octahedral 9.48
4 4=d uniform 9.17

V. DISCUSSION

In this paper we have presented a new approach to the design of mul-
tidimensional gquantizers. The usefulness of the prequantizaticn approach
has been demonstrated by the design of three optimum (or near optimum)
uniform multidimensional quantizers. In each example the quantizer can
be implemented using a zero memory nonlinearity, linear transformations,
and univariate uniform step-size quantizers. As a result the computation
time of each quantizer is independent of the output alphabet size,
Therefore, these quantizers are both easy to implement and are able to
operate in real time even at very high bit rates.

The prequantization design approach is also compatible with the design
of nonuniform multtidimensional quantizers. In [4) Gersho generalizes the
companding technique for the design of nonuniform wunivariate quantizers
to the design of nonuniform multidimensional quantizers. Bucklew (5]
shows that an optimum k-dimensional quantizer can be designed using an
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optimum uniform k-dimensional quantizer, which is preceded by a mul-
tivariate invertible nonlinearity and followed by the inverse nonlineari-
ty. Therefore the nonlinear prequantizing function used in optimum uni-
form k-dimensional quantizers is compatible and may even be of an advan-
tage when the companding approach is applied to multidimensional quantiz-
ers.
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A novel approach for the computation of orthonormal

polynomial expansions

ABSTRACT

Gary L. Wise (1), Neal C. Gallagher (2)

In this paper we present a novel technique for the computation of orthonormal polynomial ex-
pansions. The proposed method is very straightforward; given a function to be expanded in a
polynomial serics, we first use the FFT to compute a vector of Fourier coefficients. Then, using
a change of basis transformation, we go from the Fourier coefficients to the polynomial coef-
ficients. Convergence properties for this new approach are investigated.

1. INTRODUCTION

Two common ways of representing functions have
been polynomial and trigonometric expansions. In
much of science and engineering the trigonometric
Fourier expansion has dominated over the generalized
Fourier series expansions in applications. One advan-
tage of the trigonometric series over the polynomial
series is ease of coefficient computation by use of the
fast-Fouriertransform (FFT) algorithm; compared to
the FFT, coefficient computation for polynomial
expansions can be cumbersome and time-consuming.
In this paper we derive a simple change-of-basis crans-
formation that maps a trigonometric series to a poly-
nomial series.

These transformations have enabled us to develop an
efficient algorithm for the computation of orthonor-
mal polynomial expansions. The basic plan of these
algorithms is to create a vector of Fourier coefficients
by use of the FFT; this vector is then multiplied by a
transformation matrix, resulting in a vector of poly-
nomial coefficients. This approach can offer a saving
in computation time over the standard integral formula
"t computing these polynomial coefficients. Section
2 contains the derivation of the elements of the trans-
formation matrix, and in section 3 a numerical example
is presented.

2. POLYNOMIAL EXPANSIONS

Assume that H(x) is an L{-T,T] function (where T
is finite), and therefore possesses a Fourier series ex-
pansion convergent in Ly[-T, T]. Thus we may write

o0

Hi(x)s Z

infrx

hy exp (- )

where
T .
_1 7
by = o f-TH(x) exp (337%)dx.

We also assume that

/ : ()] w(x) dx < o,

where w(x) is a nonnegative weight function integrable
over [T, T]. Let @,,(x) denote an nth order polynomial,

and assume that {On(x)}:ﬂ) is a set of polynomials

that is orthonormal and complete in Lo[-T, T] with
respect to the weight function w(x). Therefore, we
can express H(x) as

H(x) = nEO a, 0, (x),

where
T
a, = I-'r H(x) 6, (x) w(x) dx. (1)
Define the truncated Fourier series as
H = 3 h_exp(-imAX
M) Imj<M ™ )
Notice that
T 2

“n'j

T lm‘F< M h,, exp (-"—fl‘,!l) 6, (x) w(x)dx

2

T
= ‘ I.'r (H(x) - Hy,(x)] 0, (x) w (x)dx

T T
< [ M) - H ()l wixds [ 16,0012 wiy)dy.

(1) G. L. Wisc, Department of Electrical Engineering, University of Texas at Austin, Austin,

Texas 78712, USA.

{2) N. C. Gallagher, School of Electrical Enginecring, Purdue University, West Lafayette, Indiana

47907, USA.
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The integral with respect to y equals one by defini-
tion. Since the integral with respect to x is finite, we
know that for any € > 0, there exists a K such that

IE [H(x) - HM(’()]2 w(x)dx < €,

k =l‘(a.~|»1)l"§p+1L2a+""’1
0 Ma+B+2)
and forn> 1 [2,p. 169]

(a,8) -n & [n+a][n+ﬁ] n-m m
P =2 2 x-1 x+1
where n | (x) meo | m Jlaem {(x-1)""x+1) ~
E:{x:v:(x)>l(}. and
and th
‘"'T rheretore T , L 2P r el T (e
IT[H(") -HM(x)lzw(x)dx <K IT[H(")‘HM(")] dx+e. " (2n+a+B+HC(n+1)C(n+a+p+1)
The first term can be made arbitrarily small by choos- In th'is case the elements ¢ ?f the transformation
ing M sufficiently large. matrix C may be calculated using a method sugges‘ted
Thus. we see that by Yao and Thomas [5] (there is an error in equation
’ (32) in [5]). Utilizing this method we obtain
o0
a, = sz_“hm Smn’ (2) €mn = 27 @, (-mm),
where where
T i -a-$-2

c,__= exp(- Xy 0. (x) w(x) dx, .

mn f_T P(-=57) Op(x) wix) ¢(t)=D(n,a,B)t Mﬂ 2n+asfel it
and where the convergence is uniform in n. Con- 22
sequently, (2) may be written as 3)
a=hC 3) M) is the Whittaker function [1, p. 264] given by
where h is the row vector of Fourier series coefficients, p ;)= /2251 p (1 ;o .26 4150t
a is the row vector of polynomial coefficients, and C r,s( )= 1 1(2 T s e,
is the matrix whose ma-th element is ¢,y . and a+f
After uniform sampling of the function H(x), we can - 2
compute the vector of polynomial coefficients in the D(n,a,B)= Lln+a+)l(n+B+1)2 arhad
following manner. In practice, a finite number of _ —
elements for h are computed by use of the FFT 21r\/kn FCin+1)IF(2n+a+p+2) (i)
algorithms. Then we perform the vector inultiplica-
tion indicated by (3). For example, h willbe a 2M + 1 For a=f, we obtain the normalized Gegenbauer poly- -/
dimensional row vector, a will be an L dimensional nomials, and in this case (5) becomes
row vector, and C will be a (2M + 1) x L matrix. n 2n+28+3/2
Because all computations must be performed using _ (‘)n‘/" Pn+8+1)F(n+p+3/2)2 n+26+3/ Jn+B+1/2(t)
only a finite number of terms, we are concerned with ¢n(t) - \/— B+1/2 :
the convergence of the resulting coefficients a, (2M+1) 21vk, T(2n+28+2) T (n+1)¢ (6)
to the correct coefficients a;, given by (1). We see
from the above derivation that this convergence is Some special classes of normalized Gegenbauer. poly-
unitorm in n, where we have neglected aliasing errors nomials are the normalized Legendre polynomials,
associated with the FFT and machine computation both kinds of Chebyshev polynomials, and Tesseral
errors. In the remainder of this paper, it will be as. polynomials. Applications of the above method for
sumed that all computations are done with 2M + 1 Legendre polynomials may be found in |3].
such sample points of H(x).
Notice that if we take T=1 and

a 8 3. AN EXAMPLE

w(x) = (1-x)"(1+x)F, (4)

. ' In this section we present an example of the above
where a > -1 and. B> -1, t}fe res'ultmg On(x) are the method using Chebyshev polynomials of the first kind.
normalized Jacobi polynomials given by Let T=1and let a=f=-1/2in (4).

P (a, ﬁ)(x) This results in 8, (x) being the normalized nth Chebyshev
(%) - TN polynomial of the first kind. The Chebyshev polynomials

n of the first kind can be defined by
where (4, p. 284, #3.191-1| Ty, 1(X) = 28 To(x) - T _y(x)
l,U(a.ﬂ)(,‘) -1, To(x) =1 )
Ti(x)=x.
-
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The resulting normalized polynomials are given by

1
0 )=
o) = ==

On(x) = \/% :I'n(x), n>l.

The elements of the transformation matrix are found
to be

<mn = Van " Jp {-mmn).

Therefore, we have that
a =V2rn I hy )" ) (- mm).

We consider the special case where the function H(x)
is real valued. Using the relations

b = hr.n

and

Jpl-mm) = (1)} (mm),
we have

2= V27 hg + 237 m'gl RE (hy,) Jg(m)

ag - W2 (_”nIZ ;:-01 RE(h )], (mm), neven
m= n#0

n-l
a = 227 (-1) 2 m§1 IM(h ) J(m7), nodd.

(8)

We now present an example of the computation of
the Chebyshev polynomial coefficients. The func:
tion H(x) is

H(x) = 0 (x) + 65(x)
=\/—E— @2x% + x-1).

The Chebyshev coefficients are computed by use of
(8); selected coefficients a, are found in tables 1 and
2 for the cases N = 4096 and N = 8192, cespectively,
where N is the number of equally spaced samples used
in the FFT.

TABLE 1. Selected values for {aj,} with M = 50,75,
and 100; N = 4096.

M 50 75 100 True
value
ag -5.38<10-3  -5.93x10-3 -6.57x10-3 0
a)  0.886 0.907 0919 |
Hy  0.995 0.994 0.993 1
4y -0.113 -9.27x10-2 -8.05x10-2 0
by -5.19x10-3  -576x10-3 -6.42x10-3 0
ag  -0.111 -9.17x10-2 -7.98x10-2 0
Lgg -9.28x10-3  6.22x10-3 142x10-2 0

FABLE 2. Selected values for {a,} with M- 50,75,

and 100; N = 8192,

100 True
value

M 50 75

ap -3.17x10°3 -323x10-3 _3.46x10-3 0
ap 0886 0.907 0.919 1
ag 0997 0.997 0.997 1
a3 -0.113 -9.27x102 -8.05x10~3 0
ag -3.09x1073 -3.15x10"3 -3.38x10-3 0
ag -0.111 -9.16x102 _7.98x102 0

0

449-9.29x10-3  6.22x1073 1.42x10-2

4. DISCUSSION

We have proposed in this paper a novel approach for
computing polynomial expansions from equally spaced
samples. The computation involved in this procedure
falls into three categories :

(1)Compute the transformation matrix C; this com-
putation need be done once and the result stored
in computer memory. The same matrix C is used
for the expansion of all functions;

(2)Given the function H(x) to be expanded into the
polynomial series, compute the Fourier series expan-
sion of H(x) by use of the FFT, This provides a
vector of Fourier coefficients;

(3} Finally, multiply chis vector by che matrix C to
produce a vector of polynomial coefficients.

The major sources of computation error with this
procedure are error in the FFT, and truncation error

in matrix multiplication (finite - rather than infinite -
vectors and matrix); these errors can be reduced by
choosing larger values of N in the FFT and M in the matrix
multiplication. 1t great accuracy is required, then large
values for M and N may be required.

In :xamining the computation time required to evaluate
polynomial coefficients we will ignore the computation
of the transformation matrix C. If this matrix is recom-
puted each time a different function is expanded in
polynomials, then the computation time for C must be
considered. For our purposes, we assume that C is
stored in memory. The matrix multiplication requires
2M + 1 multiplications and 2M additions for each coef-
ficient; if L coefficients are computed, we then have a
total of L(2M + 1) multiplications. In many cases, the
equations will simplify as in (8). The FFT routine for
computation of the Fourier coefficients requires

(N/2) logp(N) multiplications (for radix 2 FFT).

As a comparison to the approach proposed herein, con-
sider the computations necessary to evaluate the in-
tegral of (1). First, we partition the interval for numer-
ical evaluation of the integral. We then use a recursion
relation such as that in (7) to generate values of G (x)
for the chosen partition points. Next a numerical
cvaluation procedure such as the trapezoidal rule is
used to evaluate the integral. If the error in the evalua-
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tion is not small enough, the procedure is repeated
with a finer partitioning. It may be necessary to
iterate several times. This general computation pro-
cedure is necessary for each coefficient; hence, if we
want a total of L coefficients, we must evaluate L
integrals in this manner. The actual computer time
taken in evaluating coefficients in this manner varies
greatly from one set of computer code to another.
One may argue advantages for either technique of
coefficient computation; it is possible for direct in-
tegral evaluation co take less time than the FFT pro-
cedure provided a fortuitous partitioning is made;
however, we have found the FFT-matrix multiplica-
tion technique to be particularly simple and efficient.
For comparison purposes consider the exaniple of
section 3. We evaluated the coefficients ag, uy.ap, 23,
a4, ag, and a4q using the trapezoidal rule and
Simson’s rule, where we took the interval to be
|-0.99999, 0.99999]. In table 3 we used 601 points
and in table 4 we used 1201 points. Notice that since
seven coefficients are being evaluated, these corre-
spond respectively to 4207 and 8407 samples, and
tables 1 and 2 correspond respectively to 4096 and
8192 samples.

TABLE 3. Selected values for {a;} using 601 sanples.

Coef- Trapezoidal Simpson’s True
ficient rule rule value
ag 0.177 0.282 0
ay 1.23 1.40 1
a, 1.25 1.40 1
ay 0.230 0.399 0
ay 0.251 0.399 0
ag 0.231 0.399 0
349 0.289 0.458 0

TABLE 4. Sclected values for {a,} using 1201 samples.
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Some Results on the Median Filtering
of Signals and Additive wWhite Noise+

T. A Nodes and N. C. Gallagher, Jr.

.

School of Electrical Engineering
Purdue University
West Lafayette, Indisna 47907

Abstract

The first order distribution of the output of a median filter when
filtering a known signal plus additive white noise has been derived and
is presented along with some examples. 1In addition, two programs have
been written to aid in the design of median filters for the additive
white impulse noise case and some of these results are tabulated.

1. Introduction

Median filtering, a method of signal processing which is easily im-
plemented on a digital computer, has been used with success in many ap-
plications. These applications include picture processing and speech

processing1'2'3" where it is employed to smooth the signal. Previous
work in developing the properties of the median filter has been Limited

to the filtering of deter-inistics and white noisoa (i.1.d.) signals.
Unfortunately, due to the nonlinearity of the median process, the
analysis of the important signal plus additive noise case is not a
direct extension of these simpler cases. In this paper, we present some
results on the filtering of signals plus additive white noise. Specifi-
cally, we have derived the first order output distribution for an arbi-
trary given signal and noise distribution. This along with several ex-~
amples is presented in the second part of the paper. In addition, we
present some results on the effects of additive impulse noise on median
filtered signals. First, however, a review of the standard wedian
filter is in order.

Median filtering is a discrete time process in which a 2N+1 points
wide window is stepped across an input signal (see Fig. 1). At each
step, the points inside the window are ranked according to their values,
and the median value (mid-point) of the ranked set is taken as the out-
put value of the filter for each window position. At both ends of the
signal, N end points are appended to allow the filter to reach the edges
of the signal. The value of the front endpoints is equal to the value
of the first point of the signal, and the value of the rear endpoints is
equal to last point of the signal. As an example of this process, con-
sider fig. 2. Here, a binary signal of length eleven (the @'s represent
the appended endpoints) is median filtered by three different window
widths N = 1 (2N#+1=23), N = 2 (2N+1=5), and N = 3 (2N+1=7). Notice, for
the N=1 case, the signal is unperturbed, while for the N=2 and N=3
cases, the amount of structure in the signal s reduced. A number of
signal structures which can be used to define the properties of wmedian
filters can now be defined.

4The authors gratefully acknowledge the support of the Air Force Office
of Scientific Research under grant AFOSR 783605.

Presented at the Eighteenth Annual Allerton Conference on Communications,
Control and Computing, Septemben 30 - October 2, 1981,
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The output of the median filter, Y(A) is given by
Y(A) = the median value of {x(a=N),...,x(A=1),x{A) ,x{A+1),...,x(A+N)}}

Fig.l: The Median Filter
N= 3,2,1
‘ ‘ ‘ e o e o O
o8 8 ¢ o e o e o B BN | i 1 (.)
'Y Ul UK BN N N SO T Y T T O W B M I | nput signal, x{°J,
o o e e o
. . o Output signal, y'('),
s Ll s for a window size of 3 (N=1)
e © 6 o O
¢ o o 0 oo Output signal, yz(').
(AN R S N B S S | for a window size of 5 (N=2)
o @ o
e o o o o o o o Output signal, Y3(').
"B I NS U B A B O O | for a window size of 7 (N=3)
e 06 06 06 06 0 0 0 0 o o Output signal, y3(').
O D W U U NN U B A AN | 2nd pass
for a window size of 7 (N=3)
Fig.2: Effects of window size on a median filtered signal
A constant neighborhood is a region of at least N¢1 consecutive

points all of which are identically valued.

An edge is a monotonically rising or falling set of points sur-
rounded on both sides by constant neighborhoods.

An impulse is a set of N or less points whose values are different
from the surrounding regions and whose surrounding regions are
identically valued constant neighborhoods.

A root is a signal which is not modified by filtering.

Gallagher and Wise L(5,6] have shown that, while
inated by median filtering, constant neighborhoods and edges are unper-

impulses are elim-
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turbed, and in fact, only signals composed solely of constant neighbor~
hoods and edges are roots to the median filter. Again referring to Fig.
2, note that the signal is a root of the N=1 median filter but not for
filters with N greater than one, However, after one pass of the N=2
filter or two passes of the N=3 filter the resulting outputs are roots
of their respective filters. 1In fact, Gallagher and Wise have also pro-
ven that any signal of length L is reduced to its root after at wmost

%ﬂ(L-Z) successive passes by any median filter, Furthermore, any root

of a median filter with a particular window size is also a root of any
median filter with a smaller window size.

for i.1.d. (white) random signals, Kulman and Hisoa have derived the
second order statistics of the median filter. They further show that
for all the distributions which they have investigated, which include
most of the common ones, the median filter has a Low pass effect on the
signal spectrum, and thus increases the correlation. In fact, this is
also often true with more general signals; however, due to the nonlinear
nature of the filter there are cases where the second moment bandwidth
of a signal 1is actually increased upon median filtering and thus the
correlation decreased. Thus, one must use some care in applying the Low
pass assumption to median filters.

11. Output Distribution

Section 1 reviewed much of the previous work on properties of median
filtered deterministic and i.i.d. signals. As stated earlier, the more
general case of filtering signals plus additive noise is much more dif-
ficult to analyze. In this section, the first order distribution of the
output of a median filter with a known signal and additive white noise
input 1s given. This is used in program Dis to compute some statistics
of the output of the median filter several examples of which are given.

1f the output of median filter at position m has a distribution of
Fv(q,n) and the input a distribution of Fx(q,i) = Fnoise (q - si) where

sy = signal at position i, then the output distribution is

Fy(gm)= 3 .. 2,

kwml ‘..Ct..“!

Nem~=k N+m
licc 1--o8 €3 q...8

M [1-Fule .mH‘ I, a0 + T Futa)

where

2°N + 1 = yindow width

(01,az,°",lk) v (ai”Z’..."k} =2 {1,2,°¢°,(2°N+1))

f(a) ¢ +o0 ¢+ f(b) if 2 <D

b
E.'“" 1 ita>h

This result comes about from combining all possible combinations of the
points inside the window such that at Least N+1 of them have values < q.
It is straightforward to extend this result to obtain the first order
output distribution for any arbitrary input (any arbitrary random pro-
cess) if the (2N+1)th order distribution is known at every position,
however, this result is somewhat cumbersome and is not presented here.
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The above equation was incorporated into program Dis to compute the
vatue of the first order median filter output distribution, Fy(q,n), for

a signal plus white noise input. This 1{is then used to numerically
evaluate some of the statistical properties of the output at each posi-
tion m. Specifically, Dis computes the value of the mean, E (¥}, the

standard deviation, Oye the mean square error, M.S.E. (= E((yi - si)z)),
and the asbsolute error, A.E. (= E{lyi - ’1l}) at every position. These

terms may then be plotted as in Fig. & through Fig. 7 or averaged over
the signal and tasbulated as in Tables 1 and 2. These examples {llus-~
trate some of the effects of median filtering signals plus noise. Two
different distributions (impulsive and gaussian) both with the same two
noise power Llevels are used in these examples. The impulse noise used
is double sided symmetric with heights of £ 3 and probabilities

P’ = P = 0,001 and 0.05 for noise powers of a: = 0.018 and 0.90 respec-

tively. Likewise, the gaussian noise pouwers are also oi = 0.018 and

0.90. For comparison, results are also given for windowed averaging
filters.

First, consider a constant signal. The results from a constant sig-
nat indicate the effects that the noise distribution by itself has on
the filter output. The results for several such cases using averaging
and median filters are given in Table 1. It can be seen that the Aver-
age Filter does somewhat better than the median filter when filtering
gaussian noise., This is expected since for a set window width the Aver-
age Filter is the optimum M.S.E. estimator in “his case. However, when
impulse noise is present the median filter reduces the output noise
power by orders of magnitude more than the Average filter. This {is due
to the ability of the median filter to totally eliminate low probability
high power impulses which is not possible with Linear systems. In fact,
it can be shown that for a fixed window width the median filter is the
optimum BAP estimator in this case. In general, for constant signals
median filters have been found to out-perform averaging type filters

when the tails of the additive noise density are cxtcnsiv09 compared to
the gaussian case. Also certain types of general signals are particu-

Table 1: Mean square error of median and average filter outputs with
constant signal plus noise inputs. Window width=2N+]

Input Average Filter Median Filter
Additive

Noise n=| n=3 n=5 n=] n=3 n=5
impulse

oinz-0.0la 6.000E-3 2.573E-3 1.637E-3 5.396E~5 6.285E-10 8.2612E-15
cin2=°'9° 3.000e-t 1,286E-1 8.182€~2 1,305E~1 3,U48LE~3 ), OLLE-U

Gaussian

o.n2-0.018 6.000E-3 2.573E-3 1.637E-3 8.909E-3 4,6106-3  3,215€E-3

oin2=0.900 3.0006-1 1.286E-1 8,182E-2 4,046E~1 1,902E-1  1,243E-1

R .
B R DN A N S S S U




I et il cr——— —

Larly suitable for median filtering irregardless of the noise distribu-
tion.

As pointed out earlier, many systems generate signals which are not
amenable to the general spectrum separation techniques that ease the
design of Linear filters, Often this is due to the presence of sharp
edges in an otherwise low frequency signal. Such structures tend to be
roots to median filters making the median filter a good alternative for
smoothing such signals. One such signal is used here to {llustrate the
effects of median filtering these signals when additive white noise is
present. This signal ranges from =2 to 2 and consists of edges and con-
stant neighborhoods. Figures 3 through 6 plot the filter output expect-
ed value and standard deviation (E(Yi), E{Yi} + oy and E(Vi} = oy ) at

i 1
each position as solid Lines and the original uncorrupted signal as a
dashed Lline. For comparison, the results for a windowed average filter
are shown in Fig. 3. As with the median filters, the window width = 2 «
N+ 1,

As illustrated above, the median filter does an excellent job of el-
iminating impulses (see also Table 3). However, with non-constant sig~
nal structures, other types of errors become prevalent when impulse
noise 1is present, Foremost among these is edge jitter. This effect is
present even at low ncise levels and is not reduced by using lLarger win-
dows as illustrated in Fig. 4a and Fig. 5a. This effect will be further
discussed in Section I1I. Fig. S also shows the effects of filtering
with Larger windows. The final peak of the signal is only five points
wide instead of the six (= N + 1) necessary to pass through an N=5 medi-
an filter unperturbed. Fig. 5 also {llustrates another error form which
occurs when the width of a2 plateau or valley approaches N+1 points. One
or two 1impulses of the correct sign located within such a plateau will
cause the whole plateau to drop to the closest point below it, which can
be a substantial change. .

(a)

Fig. 3: For output, y, of an averaging filter, with input signal plus
nolse the E{y}(—), the E{y} + oy(—), the E({y} - oy(~—),
and the input signal (----) are plotted for a) N=) and PN=0,018
and b) N=3 and PN=0.90 where PN=input noise power and the window
width=2 N+¢|
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ig. b: For output, y, of a median filter with an input signal plus
impulsive noise, the E{y}(——), the E{y} + oy(—}, the
E{y} - oy(——), and the input signal (----) are plotted for
a) N=3 and PN=0,018(P+=P~=0,001 and Height(imp.)=+3) and b) N=3
and PN=0.90(P+=P-=0.05 and Height (Imp.)=+3) where PN=input noise
power and the window width=2+N+i=7

(a)

v v v v v —
» L J (2] n " 10

" » » W . P w e Y
Fig. 5: For output, y, of a median filter with an input signal plus
impulsive noise, the E{y}(——), the E{y} + oy(—~——), the

E{y} - oy(—),and the input signal (~=~=) are plotted for

a) N=5 and PN=0.018(P+=P-=0,001 and Height(Imp.)=+3) and b) N=5
and PN=0.90(P+=P-=0.05 and Height(lImp,)=+3) where PN=input noise
power and the window width=2+N+l=all
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Conversely, when gaussian noise is present, quite different results
are obtained. As can be seen from Fig. 6, in this case the Std. Dev. of
the output is much more smooth and constant, than with {impulse noise,
and the plots more closely resemble the results of the Average Filter
much more closely than before. This is further illustrated in Fig., 7
which plots the density of the output of the N=3 median filter at posi-
tion 34 (as reviewed in Fig. 6). Notice that while it s shifted and
the Std. Dev. reduced, it is still fairly smooth, symmetrical, and bell
shaped (although the tails do exhibit some assymmetry which {is uncbserv-

1(a) 1 )
1
N " » W I n " we " » » » " » " we
Fig. 6: For output, y, of a median filter with an Input signal plus
gaussian noise, the E{y}(——), the E{y} + oy(~—), the
E{y} - oy(—), and the input signal (-~=-) are plotted for
a) N=3 and PN=0,018 and b) N=§ and PN=0.90 where PN=input noise
power and the window width=2.N+)=]1
6.0
4
3.0 ;
4
0.0 e e S
1.5 2.0 2.5
Fig. 7: The output density (upper curve) of an N=3 median filter with an

input of signal plus gaussian noise (density: lower curve) with
PN=0,018 at position 34 (see Fig. 6)
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able in Fig. 7). This is due to the fact that gaussian noise perturbs
almost all the input points by a small amount rather than just a few by
a Llarge amount as is the case with impulse noise. However, the median
filter tracks the signal more closely than the Average filter does. A
summary of the average M.S.E.s for the above filter is given in Table 2.

Table 2: Average mean square error, M.S.E., of filter output filtering a
100 point signal and additive noise (see Fig. 3 through Fig, "7)

input Average Filt, Median Filt,

Additive

Nolse n=] n=3 . n=3 n=5

Impulse '
02=0.018 1.125€-1 2.514E-1 3.202€-3 5.590E-2
02=0.90 4.043E-1 3.774E-) 1.502€-1 2.640E-1
Gaussian
02=0.018 1.125€-1 2.514E-1 1.333€-2 —
02=0.900 4.043E-1 3. 774E~) 3.553E-) 4,280€-1

11, Ispulse Noise

The special case of signal plus white impulsive noise is of particu-
lar interest as the median filter appears to perform especially well in
reducing this type of noise., As pointed ocut above and in Table 3, this
is due to the fact that the probability of an impulse being transferred
to the output of a median filter s small. And while this is the
predominate error form for constant signals, when more signal structure
is added other types of errors take over., The problem of edge jitter
appears to be particutarly significant. This was shown in Section two
with output standard deviation plots and can be qualitatively explained
as follows. As pointed out above N+1 impulses of the same sign must be
inside the filter window in order for the ocutput to assume the value of
an 1impulse, However, if a signal edge is being filtered, then an edge
point, x(t) can be shifted by j < N*1 positions, Y(t+j) = x(t), by the
simple presence of j impulses of the correct signs within N+1 positions
of t. Narrow ( » N+1 positions wide) plateaus and valleys are also sus-
ceptible to impulses; however, these structures are much Less common
than edges in most signals.

The distribution of edge jitter, j(y(t+j) = x{(t)) has been derived.
The equations, however, are rather untractable and do not Lead to any
particular insight into the process; thus, they will not be presented
here. The distribution was incorporated into program Edg which was used
to compile Tables 4 and 5. Table &4 lists the standard deviation of the
edge jitter, j, for a number of different window sizes (window width =
2N + 1) and double sided impulse probabilities. Table 3 should be wused
in conjunction with Table 4 since the possibility of an impuilse at the
output is not incorporated into the standard deviation computation.
Note if the edge has only two states, then, as seen in Table 4, the
mean square error contributed by each edge is approximately doubled by
increasing N from 1 to 5 if the probability of impulse s
P, =P_=0.05, and this ratio decreases with decreasing P = P_. This
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increase, then, must be reconciled with a corresponding decrease in the
probability of an impulse at the output by a factor of 1,300 for the
same parameters as above. Further information can be obtained from
Table S which gives the amount of jitter with 90X certainty. The List-
ing "impulse” in this table indicates that the probability of the output
assuming the value of an impulse is greater than 10X. The use of these
tables in conjunction with the deterministic properties developed by

Gallagher and Wise!! should greatly facilitate the design of median
filters used in filtering signals with additive impulse noise as they
help to quantify the various trade offs available in such designs.

IV. Conclusion

The tirst order distribution of the output of a median filter for a
signal plus white noise input was presented. Using this, the statistics
of several examples with impulsive and gaussian noise were computed and
given. These 4{llustrate some of the properties of median filtering.
Edge jitter and narrow plateau jitter are seen to be the dominate error
modes for impulse noise. For gaussian additive noise, the output more
closely resembles that of an average filter but with a larger standard
deviation and closer tracking of edges. For the additive impulse noise
case, some statistical properties of the edge jitter 1is tabulated.
These results should aid in the design of median filters since they il-
lustrate many of the properties the designer can expect from these
filters in the important signal plus white noise case. However, much
more work needs to be done in this area to develop easier to use and
more general descriptions of the properties of the filter while retsin-
ing some quantitative ability.
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On a Class of Random Processes Exhibiting Optimal
Nonlinear One-Step Predictors

T. E. MCCANNON aANp NEAL C. GALLAGHER, MEMBER, ILLE

A bstract—Two classes of random processes thst exhibit one-step predic-
tors with optimal nonlinear minimum mean-squared ervor (MMSE) are
discussed, and conditions for membership to one of these classes are given.
Examples of each class are presented, and the optimal one-step predictors
are given.

I. INTRODUCTION

The problem of designing minimum mean-squared etrof
(MMSE) prediction filters is often complicated by the absence of
prior information on the mathematical structure of the optimum
predictor. Historically it has often been assumed that the opti-
mum implementable predictor is lincar, and such well-known
techniques as Wiener- Hopf spectral factorization or the ortho-
gonality principle are applied to determine the optimum predic-
tion filters. With the advent of modern digital technology, nonlin-
ear functions are often casily implemented, and hence a renewed
interest in optimal nonlinear-prediction theory has arisen.

We have previously presented (1] two methods of designing
nonlinear MMSE predictions filters where we have assumed a
polynomial nonlinearity followed by a linear filter. For both of
these design methods, all that is required is knowledge of a finite
number of moments and cross moments of the given random
process. Wise and Gallagher [2] have shown that knowledge of
certain moments is sufficient to specify the conditional expecta-
tion. In this case, the optimum nonlincar-prediction filter is given
by a polynomial in the sample observations.

In this correspondence we point out two classes of kth order
stationary random processes {X,) possessing as their optimum

Manuscnpt received June 26, 1980. This work was supported by the Air
Force Office of Scientific Rescarch under Grant AFOSR-78-3605

The authors are with the School of Electncal Enginecnng, Purdue Univer-
aty, West Lafayette, IN 47904,

MMSE estimate
E{Xn+llxn" : "xn-ki—l) =f(xn" : "Xn-lubl)'

where we assume f(-) to be a Borel measurable function that can
be of a nonpolynomial form. The first class we consider corre-
sponds to the random process being represented by a nonlinear
stochastic-difference equation

xn+l=f(xn""'xn-l¢+l)+Uu+l~ ¢}

The second class corresponds to the output obtained from pass-
ing a known process through an invertible zero-memory nonlin-
earity (ZNL). Such a process is of the form X, = g( Z, ), where we
know the form of the predictor for the { Z,) process. This class of
problems is of particular interest, because the best predictor for
X,, does not, in general, involve finding the best prediction for Z,
and using it as the input valve for g(-). The form of the optimal
X, predictor can be quite complicated.

II. Crassi

We define a kth-order stationary random process {X,} as
being a Class I random process if and only if {X,} can be
represented by a stochastic difference equation in the form of (1),
where (U,} are independent identically distributed (i.i.d.) zero-
mean random variables with a marginal density given by P(-).
Clearly the conditional expectation of X, . ,, given the infinite
past of the process, is

E{xn+llxn' Xa-1s "') =,(xnixn—l"”0xn-k+l)'

Writing the Chapman- Kolmogorov equation for the & th variate
densities, we obtain

(n+1) e
Pt (xn+lv 'xn—k+2)

=/ "'/qul(xml-l’”'»xn~l+llzn" S S

~P‘(,"'(Z,,,'“;l,,_k+|)dz."'dzn-—k+|’ 2)

where P{"Nx,, " ", Xp-4+1) is the joint density of
(X, "y Xpn_x+,) for the nth sampling instant, and
QueilXna1s” s Xy—k+2|Xns* * "1 X—-x +1) is the conditional density
of (Xyerv " Xo_iaa) given (X, ** X, -44,) for the (n + 1)
sampling instant. From (1), we obtain

+1
SR € SOUTELLI Y )

=/Pu[xu+l—f(xn'“"xn—k*l'zn—k#l)]

1 7 ¢ SCERIE SUUETS SRR I’ Srers
3)
Since we have assumed that (X, } is k th-order stationary, the kth
variate densities are independent of n, and (3) can be rewritten as
Pt usi) = [RLE=f(s1 s Pelsre -5 ) sy

(4)

We now state the following property.
Property 1: If {X,} is a kth-order stationary random process
and is representable in the form

X = (X Xyopet) + Upers
where {U,} are i.i.d. zero-mean random variables, then the kth

0018-9448/81,/0900-0652800.75 ©1981 IEEE
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variate density satisfies the integral equation

Pt 5y, 008) = fpu[‘ =510 s Pe(spar - 050) sy
Our convention is that lower case variables represent the realiza-
tions of upper case random variable. Furthermore, the optimum
MMSE prediction filter is given by

E(x,”||X,,.""X,,_k+|} =/(I,,"".X,, A'I)'

An cquivalent representation can be derived in a straightforward
manner. We begin by noting that the (k + 1)st vanate density is
given by

P(1, -’h"'Jk):P["’f(sn-‘"’-‘A)]P(Sn-"'v-‘k)- (5)

We then perform the expectation of [sexp iZ \S,p, 1, where i is
the complex constant, as follows:

( k
E{rexpi > S,P,}

1=\

k
=/ --~f[1cxpi 3 :,pI]P,(t,s,,-~~,.\-‘)dl-~-ds,
j=1

=f "'I[e"pi é,‘/l’l][”’u[' =f(sy,-us,) ] dr)

’x(sl""vsk)d’l"'d‘k' (6)
Via (1) we see that
L‘.(Xnollxn"”' xn k*l} =/,Pu[t-f(xn"."xnl'k*l)] dl.

Hence we can write

I'f{lcxpl IR Y p

[ o

.P‘(."’-...s‘)ds| ""LT‘

A
Jonito
|

’

k
= E{j(s..~--.s,,)cxpi b s}p/}. )

=0

Thus we have (7) equivalent to (5). Note that (7) involves the
characteristic function and as such requires knowledge of the k th
variate distribution. However, there may be circumstances where
(7) may be casier to apply than (5).

The expression in (7) is a generalization of a result presented
by Balakrishnan (3] for polynomial nonlineantics Q(-). i.c.,

A A
l-.‘{lexp: s S)p,} = E{Q(S..---.S,)expc’ > S,p,}. (8)
s=1

71
where Q(-) is the optimum MMSE estimator.

II. Curassil
Definc a stationary random process {Z,} such that
X,=8(Z,). a=(-=2,-10,1.2,--}), (9)

where g(-) is an inveruble function. This particular relation is of
interest because the random process { Z,} might possess a simple
MMSE one-step predictor. For example, suppose that {X, ) is
such that we can find a g(-) for which { Z,)} is Gaussian. We then
know that the MMSE one-step predictor on {Z,} is hincar. We
wish to investigate the best predictor for the { X, } process.

First, it is necessary to define what we will call optimal MMSE
estimators and suboptimal MMSE estimators. We consider an
MMSE estimator to be optimal if

e{(r= (1m0
=E{(Y - E(Yixi k) )

that is, one cannot do better even if more information is avail-
able. Similarly we consider an MMSE estimator to be suboptimal
if

E{(Y - E(Yix,1x,))')
>E{(Y - E(Yixi,oox, )V )

that is, one can do better with more information available.
Consider the case where (Z,} is in Class I, as discussed in the
previous section. The known optimal one-step predictor is

E(Z, |20 s2pier) = f(200 20 ii1)

We know from (1) that the conditional densny of Z,,,. given
(va' * "Zn—k# |). is givcn by

q(znﬂlznt’ . "zn—kfl) =Pu[zn~+| _/(zn-' IRETINY H)]-

(10)
such that

E{g(Z,,H)lz,,.- ¢ '!zn-kﬁ-l}
=f8(zn+|)P.[zn|_f(zm‘ "'zu~k+l)] dz,.. (1)

Employing a change of variable, we can rewrite (11) as

b{g(zn'l)'zn' T k+l}

=]g[u+/(zu""'zn—k+l)]pu(“)du' (12)

If we assume that g(-) can be written in the Taylor series

sx+a)= 3 ),

=0

s (13)

i!

then we can rewrite (12) into the form
E{g(zntl)lznt RY k+l}

- 2g(')[j(z"‘.-‘,z”_H,)]il'u'P,,(u)du. (14)
1=0 .
Defining

adEil_!/“‘Pu(“)d“‘

and using the fact that g(-) is an invertible function, we can
rewrite (14) into the desired predictor for { X, }:

E{an llx,.-' "vxn-A*I}

= 3 ag Mg (x )87 (2 D]} 15)

8

Note that (15) is valid only when {Z,) belongs 10 Class 1
considerced in Section II. This implies that (15) can be completchy
determined because the coefficients @, correspond directhy 1o
knowledge of the marginal moments of the white driving process.

|
|
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Suppose that the random process {Z,} s characterized by a
suboptimal MMSE onc-step predictor of the form

E{Zn'llzn""'zuﬂ*l) =h(2,,."‘.:" 'Y l)' (16)

where in the previous example we assumed the optimal predictor
to be of this form. In this case, we do not know the conditional
density corresponding to (10). If we define {¢,} as a random
process denoting the error at each sampling instant between the
optimal estimate and the suboptimal estimate and let P, o)
denote its marginal density at the nth sampling instant, we can
then write the conditional density of Z,,,, given
(Zyo i Zy g0 as

Q(:n-l!:n"”':n Avl)
:j’(znulzm"'vzu--uh‘nu)P.,.,(‘m|)‘1("-|- (17)
where r(-}-) denotes the conditional density of Z,,, given

(2,2, +.+y)and ¢,, . Because h(-) is an MMSE estimator,
El¢,,,) = 0. We can then write the recursive relation

znfl=h(zn"”'zll"k*l)+(ﬂ*l+Pn'l (|8)
describing the process {Z,), where (P,} is a zero-mean white

dniving process. Equation (18) is then the suboptimal analog 10
(1). From (i18) we can write

’(Z,,, |lZ".' ERRY PRI l“n’l)
=pP[:,,,— h(z,. -z, 41) — €] (19)
Substituting (19) into (17), we then have

‘l("n~||ln-“‘-1n~ A'I)

:fpp[znol— h(znv"'vzn—kil) _‘nvl]P( (‘rﬂ l)d(no 1

We compute E{g(Z,, )| Zns " "12a. 4 +1) @ before and write
E(g(zn‘l)!zn""vzn—k*l)
:‘/jg(znol)pp[zuﬂ_'h(znv"'-zn ) (n0|]
‘P‘-on((ﬂ‘l)d¢n¢ldzntl' (20)

Employing a change of variable, we put (20) into the form
E{X(Z:ﬂl)lzn'” Tela- l‘l}

'-=fx[P+h(:,.-“w«'.-m)]/p,(p - QR ()dedp.
2n

Again, if we assume that g(-) can be expanded into a Taylor
serics, remembenng that g(-) is a invertible function, and upon
defining

|
boovo= 5 [[oPAp~OP (O dedp.  (22)
we obtain

E{Xn‘llxn' R A~I)

= ib,....,x'”{h[x Mx)eog Mx, ]) (@3)

10

If we assume that the marginal error density is independent of n,

(23) can be simplified to

E{anllxn" ’ "xn'ln¢|}

"
438

a8 {alg 7 (x)8 (2 )]} (20)

1=0

where we set b,,,,= ¢,. In most cases, the marginal density
F, . () will be difficult, if not impossible, 10 obtain. For this
reason, (23) and (24) should only be interpreted as providing a
functional form for the prediction filter, and the coefficients
b, .., and ¢, should be obtained through some procedure which
minimizes the quantity

E{(Xnﬂ— E{xmrl‘xn"' 'oxn—kol})z}'

IV. EXAMPLES

A. Class I Random Process (k = 1)

Consider the random process characterized by the nonlincar
stochastic difference equation

xn+l=,(xn) + Un+l'

where {(U,} are i.i.d. zero-mean random variables. For the case
where k = 1, (7) becomes

P M(xp0) = [Pl 0= ()] PV, da,.
We now make use of the following theorem proved in the
Appendix.
Theorem. 1f the random process { X, } can be characterized by
Xor1 = (X)) + Uy,
where

1) P(-) is strictly positive and uniformly continuous on a
finite closed support &, and A X

2) f: ﬂ—‘ﬂjsuch that {v: v=u+/f,u€Q,, feQ, 0
and f(-) is continuous on 8,

then the densities P{")(x,) converge to a steady state Lanung
density P(x,) with finite closed support ,. Because the marg-
nal densities possess steady state limits, the random process ( X}
is asymptotically first-order stationary. Hence if {X,} saushies
the conditions of this theorem, then { X,} be'ongs to Class I with

=1

B. Class Il Random Process

We consider a particular example of Class 1I. We assumc that
{Z,) is a zero-mean Gaussian random process and that we have a
suboptimal characterization implying that either (23) or (24)
applies. Consider

h(‘a""-‘u»k)zch:n- (23)
Applying the orthogonality principle to obtain the coefficient c,,
we find that the suboptimal one-step predictor is given by
h(zn*' ) "Zn't ) = PZ,,.
where
E( Zn + IZn )
E(z})

]

Therclore, the random variables (Z,, , — pZ,) are uncorelated
with the random variable Z, at each sampling instant. For this
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cxample (18) becomes

7!”1 PZ+‘nol*Pn~l' (26)

where we require P, ~ N(0, o}). Conscquently, ¢, ~ N(0,q?).
and at a fixed sampling instant Z, and (¢, ,, + P,, ) arc inde-
pendent. Since ¢, ., can only depend on (P, 1 < n), P,,, and
¢,., are independent as a result of the whiteness of (P,}.
Because {Z,) is stationary, the pred:cuon error vanance must be
independent of n, and since o7 is a constant, o = o2 must also
be a constant.
Recall from (22) that

c——//p‘P(p-—c)P(c)dtdp (27)

If we rewrite (27) into

c.=—fp[fP(P ¢)P(«)d¢]dp-

we notice that the integral within the brackets corresponds to the
density of the sum, P, , + ¢, ,,. Hence

1 3
[2p = )P (e)de = m"‘P[ p/2(o} + 0?)).

and (27) becomes

o=t e ol @)
P (]

The moments of a zero-mean normal random variable are [6]

CI:{%[1.3...(i—l)](o:+o,1)l/z. ieven (55
0. iodd.

Because Z, and (¢, ., + p,,,) are independent, we can use (26)
10 obtain the expression

ol =pla? + (o’2 + 0} ). (29)
where we have used the fact that {Z,) is stationary. Substituting

(29) into (28), we obtain for the predictor coefficients

(= {%[IJ (1~ 1)1 ~p )”2 ieven (30)
0, iodd.

Finally, by substitution of (25) into (24) and using the nonlineas-
ity g(z) = 2°, we obtain for the form of the predictor

ELX, ) - cop'x, b Se,0%%3%+ 200,000
+60c¢,p?x2/% + 120¢,px)* + 12004,

From (30) we obtain the coefficient values

=1,

o =4(1 - p)e’,

co=4(1 - o) o,

== cs=0.
We thus obtain for the MMSE one-step predictor

EUN,.gx,) = 1501 = p? ) alxls

+10°(1 = p* oy, “4 oY,

APPENDIX
PROOF OF THEOREM

Theorem: I the random process { X, ) can be characterized by

Xyt = I(x)+Unﬁl'
where

1) P(-) is strictly positive and uniformly continuous on a
finite closed support 2, and

2)f 8- D,such that {o v=u+fue, feQ)C,
and f(-) is continuous on Q,, then the densities P{"'(x,)
converge 10 a steady state limiting density P, (x,) with finite
closed support Q,.

Proof: We need to show

1) Q, bounded and closed and
2) P,(-) is strictly positive and regular

al which point we can then apply the results due to Feller [5].

1) Q, Bounded and Closed: Consider first , = (support of
PL{(+)). We show by induction that &, is bounded and closed
for all n. Forn =0, f: @, - @, and because Q, is bounded and
closed and f(-) is conunuous on 3, then Q, is bounded and
closed. Now,

= {v:o=u+i,u€9,.f€ﬂ,‘}.

To prove ﬂ, is bounded, first assume that , is not bounded:
then there exists { ];) € Q;such that f, — o0 and {«,) € 2, such
that u, — oo or both so that v, = (u, +[,)-oo But &/ andQ
are bounded. Hence Qis bounded

To prove &, is closed, for any f, € Q; there exists {j} € Q.
such that {/} - Jo. and for any u, € 8, there exists {u}€Q,
such that u, — u,. Form the sequence v, =u + f:-
+ uy. But vy € 4, for all such sequenccs in Q.
closed.

Assume Q, is bounded and closed. By the argument above,
Q,I,H is bounded and closed. Hence 1, is bounded and closed for

n

From condition (2), we know that f: @, - &/ such that {u:
v=u+/, ueﬂ,.feﬂ,) CQ,,.a.ndlhatQ,,ﬂ -{v v=u+
/uEQ,,.fGﬂ}chccﬂ,,,.gﬂ c,.,¢c---ccn,
The support of P( ) is given by

g,=49 N (fj\ln)

Since &, is bounded and closed for all n and £, is bounded and
closed by assumption, then £, is bounded and closed. Also, since
Q,CQ, and P(-) >0 and uniformly cont...uous on &,. then
P.(-) > 0 and uniformly continuous on &,.

2) The Kernel (P,( - ) Is Strictly Positive and Regular: We have
alrcady shown P.(-) > 0 and uniformly continuous on £,

Defininion (Feller): The kernel is regular if the fanuly of

transforms P!"'(-) are equicontinuous whenever PJ(-) i umn
formly continuous in Q,.

We note that P'(-) = P,(-). Hence P is uniformly continu-
ous on £,. We have that

Pi™(9) =ja Plo~ ()P N2V d: € Q,

é""o—ﬁ)

ence Q, is

Look at the expression of ¢ — f(z). We have that ¢ ¢ Q,. which
is boundcd and closed, and f: £, = @1/, which is bounded and
closed. Define

Q,={pp=¢-/0¢€0,./€q}

By the same argument we used to show £, is bounded and closed
when &, | is bounded and closed, we can state €, 15 bounded
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and closed. Since {1, is compact and P,(-) is uniformly continu-
ous, then there exnsta ,E 8, such that P (a,, ) = sup, eq, Pu(x).

Define M = max,,(lP,(a,,o)l} Then because
|P(-)] sfn IR = fAPE2) ,

we have

[P s Mjnm|p;"—"(z)| dz=M, foralln.
Recalling that
P (o) = [ Rl SN e,
we can immediately write
|PA™(9) = P < [ LS (C) R AT O]

| P(2) e

Define W = max, [y dz < 0. Pick an arbitrary z,€ ,_,.
Give >0, Let 8 = 8(¢) >0 such that |¢’ — ¢"|<c Then
[P — f(20)] — PI9$" — f(20)]] < ¢/MW, because PJ(-) is
uniformly continuous on Q,, for all n. Hence |P""(¢’)
Pi"(¢")| < (¢/MW) MW = ¢, for all n and P""( -); therefore,
P{")(-) are equicontinuous and the kemel P(-) is regular. We
now appeal to the following theorems:

Theorem 3 [ Feller]: Every strictly positive regular kernel on a
bounded closed interval is ergodic;

Theorem 4| Feller]: A strictly positive regular kernel is ergodic
if and only if it possesses a strictly positive statiopary probability
distribution; where P,(x) has support @, which is bounded and
closed.
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A Theoretical Analysis of the Properties of Median
Filters

NEAL C. GALLAGHER, JR., MEMBER, IEEE, AND GARY L. WISE, MEMBER, 1EEE

Abstract—Necessary and sufficient conditions for a signal to be in-
variant under a specific form of median filtering are derived. These
conditions state that a signal must be locally monotone to pass through
s median filter unchanged. It is proven that the form of successive me-
dian filtering of a signal (i.s., the fiitered output is itself again filtered)
eventually reduces the original signal to an invasiant signal calied a root
signal. For a signal of length L samples, s maximum of 4 (L - 2) re-
peated filtesings produces s root signal.
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1. INTRODUCTION

N many signal processing applications, a method called me-

dian filtering has achieved some very interesting results.
One useful characteristic of median filtering is its ability to
preserve signal edges while filtering out impulses. Promising
applications of median filtering are picture processing and
speech processing {1]-[3]). The implementation of a3 median
filter requires a very simple digital nonlinear operation. To
begin, we take a sampled and quantized signal of length L;
across this signal we slide a window that spans 2N + 1 signal
sample points. The filter output is set equal to the median
value of these 2V + | signal samples, and is associated with
the time sample at the center of the window.
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Fig. ). Signal filtered by three different median filters: (8) N =1, (b)
N=2,and(c) N=3,

In one form of median filtering, to account for startup and
end effects at the two endpoints of the L-length signal, N sam-
ples are appended to the beginning and the end of the se-
quence. The appended samples are constant and equal in value
(o the first and last samples of the original sequence, respec-
tively. For other ways of treating the start-up problem that
gives less emphasis to the first and last values encountered,
see {4, p. 221}.

As an example, consider the binary valued sequence of
Fig. 1(2) where L =10 and N =1, the median filtered signal
is plotted below the extended input signal. The appended
values are marked as X's. Fig. 1(b) illustrates the filtering of
the same input signal as for Fig. 1(a), but we set N = 2; we set
N =3 for the example in Fig. 1(c). The signal of Fig. 1 passes
undisturbed through the N = | filter; however, it is affected by
the N=2 and N =3 filters, The signal would be reduced to a
constant value by an A = 4 filter.

The results illustrated in Fig. 1 suggest the concept of a filter
“passband’* and “stopband.” The given signal is in the pass.
band of the N = | filter and the stopband of the N = 4 filter.
If we view the median filter as one that passes edges but not
impulses, then edges for an N =1 filter may be impulses for
an N =4 filter, But what about the N =2 and N = 3 filters?
Suppose the signal of Fig. 1 is filtered twice in succession by
the N =2 filter; in other words, the filtered output is again
filtered. The result in this specific instance is a constant out-
put identical to that obtained by a single filtering with an

N =4 filter. If the constant is filtered again, the output is the
same as the filter input; the constant is invariant to median
filtering. So, by filtering this particular original signal two
times with an N =2 or N =3 filter, we have a resulting signal
that is invariant to successive filterings, the same result ob-
tained by a single pass with the N = 4 filter. Note that the sig-
nal input signal of Fig. 1 is invariant to repeated filtering with
an N =1 filter. We call such a signal a root of the median fil-
ter. We see that signals which do not reside entirely within the
filter “passband” can be reduced to their passband component
by repeated filterings.

In this paper, we will formalize the concepts of filter pass-
band and stopband. We described desirable signal character-
istics for signals employed in median filtering, and show how
some types of noise can be completely removed by median
filtering and how other types cannot be removed. These re-
sults will be presented through the development of a formal
theory of median filtering. In Section 1l we present some
basic definitions that allow us to precisely state and prove a
number of interesting results. The reader concerned only with
results may wish to proceed to Section Iil.

1l. THEORY FOR MEDIAN FILTERING

In order to give a precise statement for the theorems pre-
sented later in the section, a number of definitions are neces-
sary, We will always be working with a sample length /. where
each sample is quantized to one of K different values. The fil-
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ter window length is the number of consecutive samples con-
sidered when computing the running median. We will always
take the window length to be an odd integer (2N + 1) for N =
0,1,2,-++. As noted earlier, our convention is that the filter
output at position L is the median value obtained when posi-
tion L is in the center of the window. We define the following
signal characteristics.

1) A counstant neighborhood is at least N + | consecutive
identically valued points such that the constant neighborhoods
and edge together are monotone.

2) An edge is a monotonic region between two constant
neighborhoods of different value. The connecting monotonic
region cannot contain any constant neighborhood.

3) An impulse is a constant neighborhood followed by at
least one, but no more than N points which are then followed
by another constant neighborhood having the same value as
the first constant neighborhood. The two boundary points of
these at most NV points do not have the same value as the two
constant neighborhoods.

4) An oscillation is a sequence of points which is not part of
a constant neighborhood, an edge, or an impulse.

Of particular interest is the class of signals that can pass
thsough the filter unchanged, as well as the class of signals that
are completely removed by filtering. Assume that an L-length
signal is filtered with a 2N + 1 window. As noted previously,
we always append to the beginning of the signal an additional
N constants equal in value to the first sample of the signal.
Similarly, N constant points are appended to the end of the
L-length signal. By doing this, we assure that when the initial
signal’s first or last sample is in the center of the window, the
median filter output equals this sample value. For asignal to
pass through a median filter unchanged means that the central
sample value for each window position is itself the median of
the samples within the window.

Consider a signal that is unchanged by median filtering. As-
sume that the window increments from sample to sample mov-
ing from left to right across the signal and that the window is
now centered at the second signal sample of the original signal.
We know that the N points to the left of center have the same
constant value. If they equal the value of the center point,
then it (the center point) must be the median. If they are less
than the value of the center point, then the N points to the
right of center must be all greater than or equal to the central
value, If the N points to the left are greater in value than the
central point, then the NV points to the right are all less than or
equal to the center value, Thus, note that the leftmost N + 2
points in the window form a monotone sequence of points.
Increment the window another sample to the right, so that the
window is now centered at the third signal sample. The left.
most NV + ] samples in the window form a monotone sequence.
Assume that the N leftmost points in the window are not
greater than (respectively, not less than) the center point.
Then, since the center point is the median value of the points
in the window, the N rightmost points in the window must be
not less than (respectively, not greater than) the center point,
Thus, we see once again that the leftmost NV + 2 points in the
window form a monotone sequence. Increment the window
another sample to the right. By applying the same argument

as before, we again find that the N + 2 leftmost points in the
window form a monotone sequence. Indeed, a straightforward
inductive argument proves that the leftmost N + 2 points in
the window foim a monotone sequence regardless of the win-
dow position, Recalling that the extended signal has N con-
stant points appended to the right of the original signal, we
see that the extended signal is such that any consecutive N + 2
points must be monotone. Thus, a signal invariant to median
filtering must be such that the extended signal contain only
constant neighborhoods and edges.

Now assume that the extended signal contains only constant
neighborhoods and edges. If the center of the window is at
any signal sample, then the points in the window are either
monotone or nonmonotone. If the points are monotone, then
the signal sample at the center of the window is not changed
by the median filter. If they are nonmonotone, then the win-
dow must be centered on a point in the constant neighbor-
hood shared by two edges. Of the 2N + | points in the win-
dow, at least NV + 1 of them are equal to the center point, and
thus the center point is unchanged by median filtering.

These observations are formalized in the following theorem,

Theorem 1-Given a length-L, K-valued sequence to be me-
dian filtered with a 2N + 1 window, a necessary and sufficient
condition for the signal to be invariant under median filtering
is that the extended signal consist only of constant neighbor-
hoods and edges.'

The following corollary is a direct result of this theorem.

Corollary-For a median-filter-invariant signal to contain
both regions of increase and decrease, the points of increase
and decrease must be separated by a constant neighborhood
(at least NV + 1 consecutive identical points).

As a result of this theorem, it is possible to construct signals
that are invariant to median filtering. Also, given the space of
all length-L, K-valued signals S, it is possible to identify all
those signals invariant to median filtering with a 2N + | win-
dow. We will call these signals the roots of the filter, and this
set of signals is denoted as Ry. Note that Ry C S for any N,
and that we have the following lemma.

Lemma 1: For an L-length, K-valued set of signals S, the
root sets Ry are nested such that

“'RNOI CRNC"'CR0=S.

Proof: If a signal is invariant to a filter of window length
2N+ 1)+ 1, then each neighborhood of N+ 3 samples is
monotone. Consequently, each neighborhood of length N + 2
is monotone and the signal is invariant to a filter window of
length 2N + 1 ice,, Ry,; CRy. It is trivial to verify that a
window of length | reproduces any signal exactly upon filier-
ing because the median value of a set containing just one point
is the value of that point; thus, Rg = §.

We have established that, for a given filter window 2N + |
and a signal set S, there exists a root set Ry of signals invariant
to filtering. For a given L-length signal s, we represent the
median-filtered version of s by f(s) for a 2N + 1 size window,
We represent by f,sz)(s) the twice filtered signal

11t has recently come to our attention that S. Tyan has proven a ver-
sion of this theorem in an unpublished manuscript. We have not scen a
copy of this manuscript and can only speculate as to its contents.
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)= InlinG)).
We define /A" (s) as the n-times filtered signal

1) = IR ).

If s = fy(s), then s is a root Of the filter. We nexl prove that
for any signal s there exists an n such that fN )(s) = r where r
is a root.

Suppose that we are given an L-length signal s that is not a
root. Recall that NV constant points are appended to the begin-
ning of the signal. By construction, the first original signal
point is the median of the interval for which it is the central
point. As we slide the window from left to right across the sig-
nal, the first point to move (i.e., where the window’s central
point is not the median) must, by definition, be either a point
contained in an impulse or oscillation. Suppose that it is an
impulse. By construction, an impulse has two constant neigh-
borhoods of equal value on either side, and every point in the
impulse is filtered to this constant value by one pass of the
filter window. Suppose that the first point to be moved is
contained in an oscillation. Let p be the location of the last
point unaffected by the median filter, and assume that the
filter is centered at this point. Then the leftinost N + 2 points
must be monotone as seen in the proof of theorem 1. Assume
without loss of generality that they are monotone nondecreas-
ing. Assume that the window is now centered at the point
p + 1. By hypothesis, this point must change in value. Recall
that the leftmost N points are not greater in value than the
center point. If the N rightmost points were greater than or
equal to the center value, then this value at p + 1 would be the
median. Thus, at least one point to the right of center must
have a value less than that at p+ 1, Thus, there are N+ |
points in the window not greater in value than the center
point, and the center point changes. Therefore, it changes
downward in value. Note that it can never achieve a value less
than the value of the immediately preceding constant neigh-
borhood because there are always at Jeast N + 1 points con-
tained in the window, including that at p + | itself, whose val-
uey are all greater than or equal to the constant neighborhood.

So we see that the first point that changes under filtering is
preceded by, but not necessarily adjacent to, an invariant con-
stant neighborhood, and the point is contained either in an
impulse or oscillation. We also see that upon filtering, the
value of this point moves closer to the value of the constant
neighborhood. There are two possibilities: the value of point
p equals the value of point p + 1, or the value of pointp + | is
greater than that at p. In addition, it can be shown that the
valuc of point p + 1 is greater than the value of point p. Sup-
pose that the two points have the same value. As the window
increments from position p to p + 1, one point moves out of
the window on the left side and another point moves into the
window on the right. The point that moves out un the left has
a value less than or equal to that of paint p + |. Because we
know that the filtered value at p + 1 is less than the original
value, the point that moves in on the right side must also have
a value less than that at p + 1; otherwise, the value at p + |
cannot decrease. If the value of point p + 1 is the same as that
of p, then there remain N points in the window less than or
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equal to the value at p + 1 (and at p) and there alsu remain V
points in the window greater than or equal 10 the value at
P + |, consequently, point p + 1 is the median and would not
change. Thus, the value of the first point to change must be
greater than its predecessor,

Recall what is known concerning the last consecutive point
p that is invariant to filtering. The N points in the window to
the left of the center point p are all less than or equal to p in
value; the N points to the right of p are all greater than or
equal to p in value. When the next point, p + 1, is c:ntered in
the window, there will be at least NV points less than or equal
to p in value and at least N + 1 points greater than or equal 10
p in value. Therefore, the median value cannot be less than
the value of p. For convenience we summarize this as the
following.

Observation 1: The value of the first point to change value
during a median-filtering operation must be on the opposite
side of its predecessor than the most recent constant neighboi-
hood, and the value of this point upon filtering moves toward
the value of its predecessor, but does not move past this value.

Continuing in this fashion, consider the point p + 2, which
follows point p + 1. Note that the value at p + 2 is greater
than or equal to the value at p. As the window is incremented
to the right, p + 2 is centered in the window and a point moves
out of the window on the left. A new point enters the window
on the right. The value of this point must be either greater
than that at p or less than or equal to the value at p. If itisless
than or equal to the value of p, then there are at least NV - |
points in the window with values less than or equal to that at
p and at least N + 1 points with values greater than or equal
to that at p, Consequently, p + 2 cannot be filtered to a value
less than that at p. If the value of the new point is greater
than that at p, then, trivially, the filtered value at p + 2 cannot
be less than that at p. The same reasoning can be applied to
points p+3,p+4,--- p+N. For convenience, we summa-
rize this as the following.

Observation 2: After filtering, the N rightmost points in the
window centered at p must all have values equal to that at p or
on the oppasite side of the value at p than the most recent
constant neighborhood.

Consequently, the value at p is always invariant to median
filtering, and, in addition, the same argument apphes to any
other (invariant) point to the left of p. Also, the pointp + 1
has one of two possible filtered vaiues, as follows.

Observation 3. Of all the values in the window centered at
p + 1, the filtered value at p + 1 is either the value at p or the
closest value to the value at p on the opposite side irom the
most recent constant neighborhood.

By using an argument similar to that just presented, we rea
son that the filtered values at p + 2 = p + N are greater than or
equal to the filtered value at p+ 1. If the filtered value at p + 1
is the same as the value at p, then point p t 1 is invariant to {il-
tering on the next pass of the window because it is not greater
than the value at p. Suppose, however, that the nitered value
at point p + 1 is greater than that at p. We imust reexamince the
prefiltered point values. When p + 1 is 1n the window center,
the N + 1 rightmost points must all have values greater thun
that at p including the rightmost point p + ¥V + 1. Asa el

.
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Fig. 2. Resuit of repeated median filtering.

G

Fig. 3. Partition of the signal space § by eight roots.

when p + N+ | is in the window center, the leftmost N + ]
points have values greater than that at p and the filtered value
at p + N + 1 must be greater than that of p. Consequently, on
the second pass of the window, after all the points have been
filtered once, when point p + 1 is in the window center, the N
leftmost points are all less in value than that at p + 1, and the
rightmost NV points all have values greater than or equal to that
at p+1. Thus, p+1 is the median of the window and does
not change value upon the second filtering. This yields the
following.

Observation 4: The first point to change value on a median-
filtering operation remains invariant upon additional filter
passes.

When the observation is made that the median-filtering op-
eration is independent of whether the window moves from
right to left or left to right across the signal, we see that the
properties of the first point to change value apply also to the
last point in the signal to change value. Because of the ap-
pended constant valued points to the front and back of the
L-length signal, the first and last signal points are invariant to
filtering. Thus, at most, §(L - 2) window passes are required
to reduce the signal to a root. As a result of the previous dis-
cussion, we have the following theorem for an L-length signal.

Theorem 2—-Upon successive median-filter window passes,
any nonroot signal will become a root after a maximum of
}(L - 2) successive filterings. Also, any nonroot signal cannot
repeat, and the first point to change value on any pass of the
filter window will remain constant upon successive window
passes.

To illustrate this characteristic of median filtering, consider
the binary valued L = 8 signal of Fig. 2. This signal will be re-
peatedly filtered by use of a window length of 3 samples. The
appended constant terms are marked with x’s. We see that
:}(l. - 2) = 3 window passes are required to reduce this signal
to 2 root,

To this point, it has always been assumed that the signal is
quantized to K levels for an L-length signal. This requirement

is not needed because an L-length signal can have, at most, L
different values even if the signal samples are not quantized to
specific values. Thus, we can always bound X from above by
the value of L, and all results stated in this paper apply ‘o un-
quantized signals.

It should be noted that the value of the appended constant
points is not important for the key results of Theorems 1 and 2
to be true with only slight modification to their proofs. It is
only important that these values be constant. It is possible to
assign nonconstant values to these points such that Theorem 1
does not hold true. Finally, we also note that Theorems 1 and
2 represent median-filter properties that have been observed in
the past without proof {4, p. 212].

111, DiscussIiON

The theory developed in the preceding sections provides a
number of interesting results. First, we note that every signal
in the space of signals, s €S can be filtered to a unique root
with a bounded number of repeated filterings. Thus, the ele-
ments of the root set Ry partition § as illustrated in Fig. 3
where it is shown how the signal space is partitioned by a root
set with eight elements, whereupon repeated filtering every sig-
nal s €S is filtered to root ry € Ry and 30 on; we will call §;
the ancestor set of root 7,. If a signal s requires L filter passes
to reach the root ry, we say that s is an Lth generation ancestor
of ry. We know from Theorem 2 that any root has, at most,
*(L - 2) ancestral generations, and we know that the root of a
signal depends on the filter window size, i.e., a root for a win-
dow of size 3 may not be a root for 8 window of size 5, al-
though a root for a size 5 window is always a root for a size 3
window. In aloose sense, median filters are a type of low-pass
filter with an increasingly narrow passband as the window size
increases.

The application of median filtering to signal smoothing prob-
lems introduces an interesting twist to the concepts of signal
and noise, A simple median filter has no design parameters
other than window size, 30 long as we append N values to each
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end in the way discussed. It cannot be designed Lo accommo-
date special signal or noise characteristics. In the extreme case,
a filter can completely remove a signal component, leaving
only noise. It seems desirable that a noise-free signal be a root
signal in order that it is invariant to median filtering. If the
root signal has added noise, then it may or may not be possible
to remove the noise by filtering. Noise that can be filtered is
noise that changes the signal in such a way that the noisy sig-
nal is an ancestor of the same root. This noise can be removed
with repeated median filtering. However, if the noisy signal is
now the ancestor of a different root, then it cannot be removed
by repeated median filtering. This property of either perfect
signal recovery or false signal recovery points to yet another
application of this form of median filtering—channel coding.
For this application, the root set R corresponds to an alphabet
set. The transmitted code can contain either roots or ancestors.
In either case, decoding is accomplished through repeated
filtering.

In this paper, we have established several fundamental theo-
retical properties of one form of median filters. We have pre-
sented necessary and sufficient conditions for a signal to be
invariant to median filtering, and we call these signals roots of
the filter. We have also shown that repeated filtering of any
signal results in a root signal, and have established the maxi-
mum number of filtering operations required to reach a root.
As a result of the thecry developed in this paper, a better un-
derstanding of the potential applications, as well as the limita-
tions of these filters, is achieved.
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Properties of Minimum Mean Squared Error Block
Quantizers

NEAL C. GALLAGHER, JR., MEMBER, ISEE, AND
JAMES A. BUCKLEW

Abstract—Two results in minimum mean square error quantization
theory are presented. The first section gives a simplified derivation of a
well-known upper bownd to the distortion introduced by a A-dimensional
optimum quantizer. [t is then shown thet an optimum multidimensionsl
quantizer preserves the mean vector of the input and that the mean square
quantization error is given by the sum of the component variances of the
input minus the sum of the variances of the eutput.

1. INTRODUCTION

Block or vector quantization deals with the representation of
multidimensional elements with a finite discrete set of values. The
values t0 be quantized may natusally fall into a k-dimensional
representation; typical examples are complex numbers, positional
coordinales, or state vectors. In other cases, k-dimensional vec-
tors are formed from blocks of k samples taken from one-
dimensional signals. In 1964 Zador published a number of very
interesting results on the properties of optimal block quantizers
for the rth moment Euclidean norm distortion measure [1}.
Among Zador’s contributions are the derivation of both upper
and lower bounds on the distortion introduced by the optimal
quantizer. These bounds are derived without actually finding the
optimal quantizer. Unfortuaately, at some points Zador's devel-
opment is not easy 1o [ollow, and alicrnate derivations and
extensions by Gersho {2) and Yamada ¢ al (3] bave recently
appeared. In Section II we present an aliernate derivation of
lZ;do:'s random quantization upper bound not treated in either

) or (3).

In {4) Bucklew and Gallagher show that for one-dimensional
mean squared error distortion the optimum quanticer bas the
property that the mean value of the quantizer output equals the
mean value of the input and also that the mean square quantiza-
tion error equals the variance of the input minus the variance of
the output. In [5] Bucklew and Gallagher prove that the same
results hold for constant step-size minimum mean squared error
quantizers. In Section III we extend these properties to k-
dimensional optimal block quantizers.
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I1. RanDOM QUANTIZATION UrpER BOUND

In (2} Gersho provides a very readable derivation of Zador's
expression for quantizer distortion. To improve continuity and
readability we employ Gersho's notation. The quantizer input is a
k-dimensional random vector x in &, which is quantized to one
of N lﬂelsy.. Yasc W IN in a‘- The space a‘ is pmluoud mtp
N disjoint and exhaustive regions S,, Sy," - -, Sy. The quantizer is
defined by the function Q(x) defined by O(x) = y,, if x € S,
Note that this definition does not require that y, € §,, although
in practice y, is usually contained in S,. The performance of the
quantizer is measured by the distortion

D= -'Et-:(ux = (X))

where || - il denotes the usual Buclidean distance norm, the
operator E{-) denotes statistical expectation, and the input X is
2 k-dimensional random input vector. The case where r = 2 is the
usual mean squared distortion. The expression derived by Zador
and Gersho for the minimum distortion D, obtained by use of the
best quantizer is

Do=N"/‘C(k.’)"P(x)lh/(nn)- ()

where

1o, =[ flpeas] ™.

and where the constant C(k, r), called the coefficient of quanti-
zation, is independent of the density p(x) and is in general
unknown, This expression is an asymplotic result valid only for
large N. Two special cases for which the value of C(k,r) is
known exactly are (2] -

c(l,r) = -’-hz".
and
s
c(2,2) = 3—67_3-

Consider the density p(x) baving a constant value of one over
the unit volume hypercube; then Il p(x)ll4 4+, = 1. In this case
(1) becomes

D, = N™"7*C(k,r). ()

So, we see that by finding a bound on D, we also bound C(k, r).
To find this bound we choose the quantizer output levels to have
a random distribution uniformly distributed over the hypercube.
For a particular input value x, we find the closest output level
and quaniize to that value. Because this quantizer is not the
optimum quantizer, the associated distortion will bound {rom
above the distortion for the optimum quantizer.

To begin, place at random N independent uniformly distrib-
uted k-dimensional samples in the hypercube. These will be the
output levels. We take the quantizer input X to have a uniform
distribution over the hypercube. We also assume that N is suffi-
ciently large so that there is a very small probability that the
quantizer input is closer to an edge of the hypercube than to one
of the output values. Supposce that an input value x has arrived
and is sitting in the hypercube waiting t0 be quantized. The
probability that one particular output value is within a distance p
of this input sample is given approximately by the volume of a
sphere of radius p about that sample point, or

Pr (one particular output level is within p of _ V.oh
the input sample) =V

where if ¥, is volume of the unit radius sphere, then ¥, p* is the
volume of the sphere with radius p. We are interested in the
closest output level 10 the input sample. To compute the proba-

bility that the closest output level is within a distance p of the
input sample, we combine classical order statistics with the result
found in [3]. By cmploying this approach, we compute the
probability density f(p) for the distance between the input sam-
ple and the nearest output level to be

£(p) = N1 = Vo] "' Vikt .

Note that for large values of N this probability density goes to
zero rapidly as p increases. By construction p = {lx — y,ll, where
x is the input value and , is the output value. Consequently,

E(IX - Q(X)I'} = E(s');

$O, '
D=LE(
= k (P)

=% p N1 = V] Y ki dp.

hypercube

Make the change of variables s = V,p* and usc the fact that
s s | to write

N r(|+£)r(~)
kvt r(~+ 1 +£) '

n 'l/k - o IN—? =
s—_kl/,’/"’;‘ [1—8]" s

where T'(-) is the gamma function. For large N the following
approximation is valid:
——_—I‘-S—N)——— = N“”V‘.
( (k+7r)
r(n+ ——-—)
k
Therefore,
~r/k L
N I‘(l + k)
kvt
Because D & Dy, we use (2) 1o write
r
!‘(l + ;)
117
which is Zador's random quantization upper bound.

Clk,r) s

III. MOMENT PROPERTIES OF OPTIMUM QUANTIZERS

In {4] and (5] it is shown that, for minimum mean squared efror
one-dimensional quantizers, the mean of the ‘aput equals the
mean of output and the distorion equals the ‘ariance of the
input minus the output variance. These propertics are shown to
apply with and without the equal siep-size constrant In thi
section we gencralize these results to the k-dimensional case.

We are interested in the properties of quanuzers designed to
minimize the distortion defined by (2) for r = 2:

D = LE(IX - QUX)NY).

Many constraints we might impose on the quantizer can be
imposed by the functional form of Q(x), for example, the
k-dimensional version of the equal step-size condition might
require the regions S, 53, -, Sy to have equal volume and be
congruent. We had originally employed a variational approach 1o
obtain the results of this section; however, an alternate approach,
suggested by an anonymous reviewer, provides more intwition
into quantizer structure. So, we employ his method.

2l
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To begin, we define the parameters P, and X, as follows:
P=}P dx,
= [P

and
x,=P" j xP(x) dx. 3)

We note that partition (S,)Y., need not be the optimum parti-
iion. Consider two different quantizers defined over the partition
{S,)¥ . one with output value X, and one with output value ¥,

These quantizer functions are represcnled as QuX)= X, and
Q(X) = Y, respectively. It will be shown that the quantizer
Qu( X) is optimum for the yven partition. We have that

E{(1x - @XW?) = s fx—m+ 5= 9) P(x) ds.
=l <

0]
By (3), we have

j;(x - x)(x, - p)P(x)dx=0;

therefore, (4) becomes
N

E(#X - QX)) = E(NX = Qo(X)N?} + T Plx,~ y2.
=1

()
The expression in (3) illustrates that the quantizer Qy(X) pro-
duces an error no larger than any other quantizer Q(X) for a
given panition. Also, by (3) we sce that the mean of the quantizer
outputs ¢quals the mean value of the input; this follows by

N N .
;'}‘,x,= Z:,[s”(x)" =fo(x) dsx, (6)

where the left side is the mean of the output and the right side the
mean of the input. It can also be shown that the quantizer error
equals the variance of the input mious the variance of the cutput.
Consider the input variance

E(IX = E{X}I?} = E{IX ~ Qo(X) + Qo(X) ~ E{X}U?}
= E(IX - Qu(X 2]} + E{nQu(X) ~ E(X)1?},
Y

where as before the cross terms are zero. The right side of (7) is
simply the sum of the quantizer error and the output variance.

Equations (6) and (7) specily the first and second moment
properties of the optimum quantizer; these properties follow
regardless of the optimality of the partition. In addition, it is
noteworthy that the oplimum quantizer is not unique. A simple
example serves to illustrate this point. Consider a two-dimensional
circularly symmetric input density. Any rotation of & minimum
error quantizer is also a minimum error quantizer. The same
property holds for one-dimensional quantizers, where it is possi-
ble to have more than one minimum error quantizer.

VI, Summanry

This cofrespondence contains two results dealing with the
properties of k-dimensional minimum mean squared efror quan-
uzers. We have established necessary conditions for optimum
quantizers, These conditions are used to show that for «-

imensional quantizers the mean value of the input is preserved
n the output and that the mean squared error equals the input

variance minus the output variance. Also, a simplified denvation
of Zador's random quantization upper bound is developed.
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The Binary Multiplying Channel—A Coding Scheme
that Operates Beyond Shannou’s
Inner Bound Region

J. PIETER M. SCHALKWLIK, SENIOR MEMBER, I5EE

Abstract— Blackwell’s binary multiplying channel is well known as an
example of 8 two-way chennel for which Shannon’s inner and outer bounds
10 the capacity region differ. A deterministic coding scheme is given which
outperforms the inner region for this channel. Dueck had earfier obtained
an analogows result for ancther type of two-way channel.

L. INTRODUCTION

Shanoon (1] derived inner and outer bounds to the capacity
region of the two-way channel (TWC), A TWC (see Fig. 1) is a
discrete memoryless channel with finite input and output al-
phabets and defined by a matrix [ P(y), ;| x), X;)) of transition
probabilities. Shannon’s inner bound region equals the convex
hull of the region of rate pairs (J(Xy; Y| X;), #(Xy; Y, | X)),
where the input distribution P(x,, x;) is allowed to vary over all
product distributions P(x,, x;) = P(x,)P(x;). Likewise, the
Shannon outer bound is the convex hull of the region of rate
pairs (I(X,; Y31 X;), I( Xy Y, | X.)). where the input distribution
P(x,, x,) is no longer restricted 10 be of the product type.

Blackwell's binary multiplying channel (BMC), which is a
TWC satislying Y, = ¥; = X X;. is an example of a simple TWC
for which the inner and outer regions dilfer. In Fig. 8 we have
reproduced from [1] the boundary G, of the inner region and the
boundary G, of the outer region for the BMC. (See {1)] for explicit
cquations specifying these regions.) We show that each point on
the third curve in Fig. 8 can be schieved by a certain determinis-
tic coding scheme. Consequently the inner region for the BMC is
not the capacity region. (An analogous result had been obtained
carlier by Dueck {2] for a TWC which was not a BMC.) For the
sake of simplicity, in the next section we first describe the coding
scheme which achicves the point on our curve for which R, = R,.

11. THE CODING STRATRGY

The senders try to send information that without loss of
generality can be taken as the location of a subinterval {3}, [4), of
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We have shown in a previous paper that an op-
timum quantizer can be designed for the random vec-
tor X, when X is uniformly distributed. However,
finding an optimum quantizer when X has an arbi-
trary density function is in general very diffi-
cult. Thus in this paper we consider the design of
near-optimum quantizers for X when the density is
nonuniform, The results show that if we allow the
number of quantization Levels to be large, we can
obtain a distortion performance arbitrarily close
to the distortion of the optimum quantizer, The
results also provide a useful tool for the compand-
ing design of optimum quantizers discussed later in
the paper.

1. Introduction

A number of authors [11-(4] have examined the
advantages of multidimensional quantization over
univariate quantization., Unfortunately muitidimen-
sional quantizers are difficult to design and must
usually be implemented using a search procedure,
The disadvantage of a search implementation is that
the storage and computation requirements increase
with the number of quantization levels and the di-
mension of the quantizer, 1In a previous paper (5],
we present a method called prequantization for the
design of optimum uniform muttidimensional quantiz-
ers without the drawbacks of a search. Now in this
paper we extend Bennett's companding results (6] to
k~-dimensions for the design of nonuniform multidi-
mensicnal quantizers., These new methods also avoid
problems associated with a search.

1I. Piecewise Companding
Let p{x) be the probability density function
(pdt) of the vector X. We begin by constructing a
density g(x) that is a piecewise constant approxi-
mation of plx). Let S be the compact support of
both p(x) and g(x). We partition S into M compact
regions each denoted by Ci and with area (measure)

L] for i = 1,2,...,M. The density is then defined

as

p.
9tx) = = vael, , 12,2 ..., 0
i

where

p; S olwdx .
C.
]
Now compare the quantization of the random vec~-

tors X and Y where Y has the density g(x). We de-
fine Oo as the optimum quantizer for X given p(x)

and Og as the optimum quantizer for Y given g(x).

lador's equation for the minimum per sample distor~
tion of X is

1 r -r/k
0, = g EClIX-a (15> = Clk,rIN el jger

where
X k~dimensional vector
00(5) quantized output of Qo
N number of quantization levels (assumed

Clk,r) constant dependent only on k and r

ot [f el

Similarly the optimum distortion corresponding to
the random vector Y is
-r/k
Hollypep + @
using (1) and (2) and Bennett's integral for
mismatched gquantizers, we can show that a near-
optimum quantizer for the random vector X can be
designed by finding an optiaum quantizer for a ran-
dom vector with the density g(x). As the approxi-
mation of p(x) by g(x) becomes more accurate (Mem),
the distortion approaches the optimum distortion,
Given this background, we now examine the design of
optimum quantizers for random vectors with piece-
wise constant densities.

We design the optimum quantizer for the density
g(x) by finding the number of quantization levels
that must be assigned to each partition c‘. The

1 r
o=y emy_—ag(mlz) = ¢(k,rIN
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first step is to rewrite 2ador's distortion equa-
tion in (2) as

" .klktr " k r ir/k
)] k+r k+r
b= Y p, Clk,r) e om . (M
i ) N pf’"' gm0 3 i

Second, we examine the minimum distortion °i in
each partition c‘. The distortion is defined as

al - r
0y = ¢ ELHX - @ (X, |xeC.y .

We can write the density for each partition as

9,(x) = glxixeC.) = ‘;_ A

i 1

=0 H !!Ci .

Let Ni be the number of quantization levels as-
signed to the partition ci. We note that the total
number of quantization levels is N and therefore

"
Y on <N,
i=1 1 -

(%)
Again using lador's expression we find
~rlk
b = Clk,r) N, ||9i(5)|'klk0r
ker
-r/k 1
= C(k,r) N‘. -—m L
i
",
= c(k,r)(ﬁ-!-)rlk . (5)

1

Since the density function of each part-tion is un-
itform, we can achieve the optimum disto tion in (5)
by using the optimum k-dimensional uniform quantiz-

ers described in {5). The total distortion D‘ can

pe written as the expected value of the o"s in (5

and thus
]
b, = ;: Dioi
i=1
M m,
= L opctngh Tt %
i=1 i
Recall that D in (3) represents the optimum gquanti=-
zation distortion. Yhus by setting DT = 0 we can
solve for the optimum assignment of the aquantiza-
tion levels "i‘ One solution is
k/k¢r
"L E k/ker _r/ker
N, ® —%TYr =~ Pj "5
i N e, j=1
and therefore
pk/ktr r/ker
! ! . N

N

N. =
1 H
k/k*r _r/ker

T p, "

=9 ) ]

—-

T ——

We now have a method called piecewise companding

for designing near~optimum quantizers for X given
p(x). Mith this method the support § is first par-
titioned into M regions and then each region is

quantized using an optimum uniform multidimensional
quantizer with the number of quantization levels
specified in (7).,

11t Optimal Companding
A number of important properties of optimal com-

panding have been examined in the Literature. How-
ever, to the authors' knowledge an example of an
optimum k-dimensional compander has never been

presented. In this section we construct an optimum
2-dimensional quantizer using companding., The ex-
ample adds insight into the companding problem and
suggests general guidelines for the companding
design of optimum k-dimensional quantizers.

Bennett (6) was the first to use companding to
design a nonuniform 1-dimensional quantizer., The
structure of a typical companding system is shown
in Figure 1, The input is first compressed by the

UNIFORM -1 -
ALY QUANTI2ER f ("l
— - e ——_— - —-
fFigure 1 Typical companding system,

and quantized with a uniform
uniformly quantized value is then

nonlinearity f(x)
quantizer. The

expanded by the nonlinearity ¢ 1(.). Bennett's
work was later extended by Panter and Dite [7).
Panter and Dite derive an expression that can be
used to design the optimum companding functions
given the input density function and assuming N is
Large. As a resylt it is a8 relatively simple task
to design a companding system for an optimum nonun-
iform 1-dimensional quantizer,

In (83 Bucklew shows that the companding design
can be extended to k dimensions, For k dimensions,
the uniform quantizer in Figure 1 becomes the op-
timum uniform k-dimensional quantizer, Similarly
the compressor and expander fuynctions become k-
dimensional invertible nonlinearities, Bucklew
shows that the optimum compressor and expander
functions must be conformal almost everywhere. As
it turns out, this restriction severely limits our
ability tc design optimum companding systems. How-
ever, using the results of Section II and the 1dea
of conformality, we can construct an example of an
optimum compander.

In practice we would be given a density function
and asked to design the optimum compander. To con-
struct this example we consider the problem in re-
verse. first we choose a compander that satisfies
the conformality constraints and then we find the
probability density function for which the com-
pander 1S optimum,

Let (U,v) be a random vector with the density
function plu,v). fFor convenience et the support

of plu,v) be the set § = ((u,v): 1 < uZ . VZ < ez',
v > 0} as shown in Figure 2. Now consider the
2-dimensional conformal map W = ez

and 2 = x ¢ 1y. e define
as

where w = u ¢ v
the compressor function
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Figure 2 Support of density plu,v).
x = lnVYu ¢+ v
-1y (8)
y = tan "
and we define the e¢xpander function as
u=e* cos y
9
x
vze siny.
2
The vector (U,V) is mapped into the square X (0,x)
i=1

in the Z-plane by the compressor function in (8).
The resulting vector (X,Y) is quantized using the
optimum uniform 2-dimensionatl (hexagonal) quantiz-
er. Then the output from the hexagonal quantizer
is mapped back into the W-plane using the expander
function in (9). We now wmust find the density
plu,v) for which this quantizer is optimum.

We begin with a piecewise companding design for
the unknown density plu,v). The support S of
plu,v) is partitioned into M equal-sized regions
ci, each with area L subv. Using (7), the op~

timum number of quantfization levels for each parti-
tion is given by
1
pi/2
"i = N N B (10)
172
p.
=1 !
where

P, = J pCu,vidudv .
C.

1

We implement the piecewise compander as follows.

First, we find the partition that contains the ran-

dom vector (U,¥). Then for each partition C‘,

(U,v) 1is quantized using an Ni-level hexagonal
quantizer,
We compare this implementation of the piecewise

compander with the companding system described in
(8) and (9). The compressor function in (8) maps

L]
each partition Ci into a new partition c‘ in the

2 .
X (0,v) square of the 2-plane. The partition C‘
izt

is then quantized wusing the hexagonal quantizer

- - LN aeut oy

L]
discussed above. Let Ni be the number of quantiza-

L}
tion levels contained within ’1. For N Large, we

can consider the hexagonal quantization Llevels to
be uniformly distributed within 0 < x,y < v. Thus,

L] L]
"i will given by the ratio of the area of ci to the
[]
total area of the square. If we lLet moo= ok, oaxsy

L] L]
be the area of Ci, the number of Levels “i is given
by

' N
N, = :? k,axay . an

The expander function in (9) maps the N; quanti-

L]
zation levels in Ci into the partition Ci in the

W-plane. Since the mapping is nonlinear, the
quantization levels will no longer be in the form
of a hexagonal Lattice, However, the gquantization
will be approximately hexagonal when the area of Ci

is smatl.

We now assume there exists a density plu,v) con-
tinuous almost everywhere, such that the number of

L]

quantization levels N‘ in (10) is equal to “i'
Thus for N Large and dulv small, the distortion of
the companding system in (8) and (9) is approxi-
mately equal to the distortion of the piecewise

L]
compander. Setting Ni = Ni we obtain

" N p‘:/2
=3 kiAIay ey Qa2)
L} 172

P 3

j=1

We can rewrite this expression as follows. As
stated above that the compressor function in (8)

’
aaps c1 onto Ci for all i. Then by definition,
J 4 _(u,v)dudv = [ dxdy
c. xy ’
] Ci
= k‘ Axdy

where J.’(u,v) is .he Jacobian of the transforma-
tion {n (8). Using this result and the definition
of Py in (10), we can rewrite (12) as

'ZCI p(u,v)dudv]1lz
C
1

{ dy, sVIGUdV = g 7 A3
i b Cf plu,v)dudvl
21
=

Recall from section I1 that in the (imit as
M + = and suav + 0, the distortion of the piecevise
companding system approaches the distortion of the
optimum quantizer for plu,v). We can also show
that for this same Llimiting relation, the distor-
tion of the companding system in (8) and (9) is
equal to the distortion of the piecewise compander.
Therefore, the companding system in (8) and (9)
will be an optimum quantizer for the density p(u,v)
that satisfies (13) in the limit as auav « 0. Di-
viding both sides of (13) by auAv and taking the
Limit as dudv » 0 we find




T

LA A o o o e o 4

A ]

-2p1/2(u v)

J‘y(u,v) =
P (u,vidudv

S

=k o' %0, (14)

where K is a constant.

Computing the Jjacobian of the cospander in (8),
we find the companding system is optimal for the
density

-2t
plu,v) = (IAL) re ) ;s V < uZ + v2 < ez' ,v>0

(U™ + v) -
=0 ; elseyhere .

IV.  Summary

We have discussed the design ot optimum and
near~optimum quantizers for random vectors with
nonuniform density functions., For the design of
near~optimum quantizers a piecewise companding ap-
proach was presented, While not optimum, quantiz-
ers using piecewise companding can be designed for
random vectors having ay given k-dimensional densi-
ty function,

The use of k dimensional companding systems for
sptimum nonunitorm quantization was also examined.
Extending the results in (14) we find that a neces-
sary condition on the Jacobian of the optimum
compressor function is

3w =kt ey

where r is the power of the distortion measure.
While these results add to our understanding of op-
timal companding, they also suggest that it may be

The authors wish to acknowledy. partial support by the Air Force Office of Scientific

Research under grant AFOSR-78-3605,

Jossible to design an optimum companding sysiem
for all but a few k dimensional densities. Thas
further underscores the importance of the piecewise
companding technique.
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A Note on the Computation of Optimal Minimum
Mean-Square Error Quantizers

J. A. BUCKLEW AND N. C. GALLAGHER, JR.

Abstract—This paper considers the problems assuciated with
computing optimal minimum mean-square error quantizers. Most
computationsl methods in current use are iterative. These iterutive
schemes are extremely seasitive to initial conditions. Vsrious methods
of obtaining gaod initial conditions are presented and discussed.

1. INTRODUCTION

In his classic paper of 1960, Max presents an iterative
scheme for the computation of one-dimensional minimum
mean-squared error quantization characteristics [1]. In addi-
tion, he solves for the optunuin Gaussian quantizer for up to
36 output levels. In [2]. Gallagher uses Max's method in the
computation of optinmun Rayleigh quantizer parameters, and
in (3] Paes and Glisson use the same method to compulte the
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optimum Laplacian quantizer later recomputed by Adams and
Giesler [4]. Max's algorithm is very simple to program into a
digital computer, and we view this simplicity as a good reason
for using his method. However, one problem that arises with
this algorithm is its failure to always converge to the optimuin
solution when the number of quantizer output levels is large.
The reason for this is that the initial guess for starting the
iteration must be increasingly precise as the number of quan-
tizer levels becomes large. So, for a 64-level quantizer, Max's
algorithm will not converge to the optimum solution unless
the initial guess for the first output level is very close to the
true value. This difficulty has prompted others to employ
more sophisticated optimization methods in the solution for
optimum quantizers. For example, Pearlman and Senge (5]
use a vector space optimization technique that is a combination
of the steepest descent and Newton-Raphson methods to solve
for the optimum Rayleigh quantizer. It is not our purpose to
detract from this and similar methods that do work well, but
in our view, if the starting point problem can be solved, Max's
nethod is the preferred method of solution. In Section 1l we
discuss several methods for choosing the iteration’s initial con-
dition very accurately, and we have demonstrated convergence
of Max’s algorithm for at least 10000 output levels and pres-
ent numerical examples in Section III.

I1. THE COMPUTATION OF OPTIMUM
ONE-DIMENSIONAL QUANTIZERS

A common method for implementing one-dimensional
quantizers is the companding method as discussed by Smith
{6]. The companding method is straightforward: the input
signal x with probability density p(x) first enters the invertible
nonlinearity g(x), called the compressor; then it goes into a
uniform quantizer over the range [0, 1], and upon reconstruc-
tion it passes through the expansion nonlinearity g~ l(x). For
minimum mean-squared c¢rror quantiza:ion, the asymptoti-
cally optimum compressor function is given by

- -1 x
g(x) = [ [ [p(y)l"’d.v] f (NP dy.

In Max's classic 1960 paper an iterative method is presented
whereby the exact quantizer paraieters can be computed for
finite V.

Max’s algorithm provides a method for the solution of the
equations

e =ity )2 i=2 N (2a)

and

“ia
(x —vip(x)dx 0, i1, N Q2bhj
i

where the output levels of the guantizer are denoted Y.
Y2, 'y YN and the internal breakpoints us €, €3, " NGy
Typically, endpoint valuese; and ey +, are knowna priori and
the first step of Max’s procedure is to choose a value for y,
with which to solve (2b) for the value e;. We then use this
value in (2a) to find y3 and use this to finde; in (2b), and so
on. The last integral over (ey, ex ) can be used to determine

0090-6778/82/0100-0298%$00.75 © 1982 IEEE
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the accuracy of the initial guess for y,. If the last integral is
zero within a specified error, we use the computed parameters
to specify the quantizer; if not, we make a new guess for y,
and begin the procedure again. Details on how to modify the
initial guess for y, are not specified by Max.

We have computed quantizers using Max’s method for
several densities. It has been our observation that the converg-
ence properties of Max’s algorithm are greatly dependent on
the initial guess for y¢. Let y; x denote the first output level
for an optimum N level quantizer. Intuitively, if the first guess
at yyn (call it pyn) is very close Lo yy(n+1) then Max’s
algorithm tries to converge to the N + 1 level quantizer. A
consideration of Max's method indicates that the first ¥ steps
of the algorithm are the same for the N or N + | level quanti-
zers. Although never reported in the literature, it is our under-
standing that this phenomenon has been widely observed [7].

As an asidc, we remark that the conditions presented in (2)
are not sufficient conditions to specify the optimum quantizer;
they are only necessary. However, in 1965 Fleisher [8]
showed that if

dz
e’ {Inp(x)} <0

then the expressions in (2) are both necessary and sufficient
for the specification of the minimum mean-squared error
quantizer, and their solution provides us with the unique
optimum quantizer.

We now describe two similar methods for generating a good
initial condition. First, note that the initial condition can be a
guess at the value for ¥, or & guess for the value of any y,,
i =1, =, N wherever we choose to begin the iteration. The
first method is a modified version of an estimation method by
Panter and Dite [9] and Roe [10]. The second method
employs a companding model to produce the iteration starting
point. Both methods grow more precise as the number of
quantization levels N increases. Each method, however,
requires computation to generate an initial value; the com-
plexity of this computation varies depending on the distribu-
tion of the variable to be quantized.

In the first method we use the asymptotic level density
A(x) for the minimum mean-squared error quantizer. A(x)Ax
is approximately the ratio of the number of output levels in
a region Ax about x to the total number of output levels N.
This function 1s the first derivative of the compressor function
g(x)in (1):

Ax) =g'(x)
-1

=[p(x)l"’l:/ lp(y)l'/’dy] ‘ )

Smith {6] shows that this function has the property that for
adjacent output levels y; and ¥4 ¢,

|
Yieg Ty = fory €[yi yies) (4)

NA(Y)

when the number of output levels is large. As an aside, we
remark that our compressors always have unity range. Smith
allows more generality in his formulas. The best way to il-
lustrate the use of (4) is through an example. Suppose that

p(x) is a zero-mean symmetric density (no Dirac delta func-
tions), that N is even, and that a unique optimum quantizer
exists. The initial condition for the Max iteration is a guess for
tirst output level greater than zero. We will call this level y /5
We first make the observation that the output levels must be

symmetric about the origin. Also, for large N, the distance -1

between the breakpoint at zero and yy,; approximately
equals

1
y, = —————— (5)
Y o)
2

The solution of this equation provides the initial guess for
YN ;2- This basic procedure can be used with modifications for
N even or odd with most common probability densities. Some
numerical examples are provided in the next section.

The second method uses the companding function to work
backwards from the known umiform quantizer over [0, 1} n
order to estimate the initial output level. In fact, the method
provides a reasonable approximation to the entire quantizer
An N level uniform quantizer on [0, 1] has output levels

pI R | o
yi"_uT’ =1 N (0
Therefore, the compand: - approximation is simply
=g~ Y ($)= -1 Zf_—_l . (7)
STET S 0 Bl | ( " )

For the purpose of identification, we will refer to the first
method of (5) as the A-approximation and the second as the
g-approximation. In hindsight these two methods seem ob-
vious; however, they have apparently not been widely used.

II1. NUMERICAL EXAMPLES

In this section we provide some examples using the A- and
g-approximations to estimate the initial input interval end-
point of a Max quantizer. The asymptotically optimum mean-
square error companding characteristic is given by

/ p(¥)3 dy

= = g(x)
/ p(y)}3 ay

where p(») is our input probability density.

The first example we consider is when p(») 1s the Gaussian
unit variance, zero mean, probability density: g(x) 1s then
given by 1 (1 + erf (x/v/6)); hence, g7 (») = V6 erf!
2y — ). ’Usmg this equation, our expression for the initial
positive input interval endpoint of an N output level quantizer
isxgn=V6erf ' QW2+ 1) - 1)

The A-approximation requires us to solve the cquations
(using a standard Newton-Raphson search)

1
~ for N even
NN\(xy2)

XA =

|
X\ANF T for N odd
ANMx12)
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Fig. 1. Py (solid line) and P), (dotted line) plotted asa function of ¥ Fig. 2. P, (solid line) and P) (dotted line) plotted as a function of ¥
for the Gaussian density. for the Laplacian denaity.
where
1/6
Mxya) = —=5 p(xa)'3. 3
1) (61’)‘/2 1 I
T
. . .2
Since Max tabulated the actual values of the input interval V4
endpoints, we may compute the quantities :"
K {
alXig ™ Xact
Xact o !
and
p & XA — Xact ° 0 20 » [*Y
A= x Fig. 3. P‘ (solid line) and P, (dotted line) plotted as a function of N
act for the Rayleigh density.

for various values of N where x,¢, is the actual tabulated
value.

In Fig. | we see Py (solid line) and Py, (dotted line) plotted
as a function of N for values of N from 5 to 36. As may be
seen from the figure, the g-approximation is better for all these
vaues of N. Furthermore, the A-approximation does not have
a solution for N = 4, which is an additional drawback of using
this approximation in low N regions.

We now perform the same computations for the Laplacian
(P(») = exp {~171}/2) and Rayleigh (p(») = ¥ exp {—»?/
2}) probability densities. In Fig. 2 we plot P, (solid line) and
P, (dotted line) for values of N from S to 16 for the Laplacian
density. Again, the g-approximation is best for all values of N
and, furthermore, the A-approximation has no solution when
N=4,

In Fig. 3 we see plots of Py (solid line) and Py, (dotted line)
for values of N from 2 to 36 for the Rayleigh distribution. For
every value except N = 2, the g-approximation is better than
the A-approximation. The plot of P, is noisy because calcula-
tion of x, for this deasity required a large nymerical iptegpa-
tion which was very sensitive to the number of samples used in
the summation.

We should note that Max quantizers have been computed
for the Rayleigh and the Gaussian densities using both x,, and
X g as the estimate for the initial interval endpoint. With no
convergence problems, quantizers of 10000 and 200 output

levels have been computed for the Gaussian and Rayleigh
probability densities, respectively. In practice, we find that
both methods give sufficiently good estimates to allow quick
convergence to the correct quantizer. A typical value is 200
iterations for a 1000 level Gaussian quantizer with the last
level specified to 10~ accuracy. We conclude that the x, ¢
estimate is a better approximation in most cases, but the x,
estimate is often substantially easier to compute.
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spraial attentiun is directed (0 the case where the nonlincarity is 3
pohynomial. Alvo, a noniterative approach based on nonlinear regression is
presented,

I. INTRODUCTION

In this cnrrnpondq.m.c we consider @ second-order random
process {a,. n = L2 -}, and we are interested in predicting
the random variable \y . {rom an observation of X X,.
Our estimate is denoted hy X n o 1o and we wish 1o choose it so as
to muninuze the mean-wjuared error.

It s well-known [1. pp. 77-78] that the optimal estimate of
Xy menms of X .- - Xy is given by the conditional expecta-
hon

Xooo E(Xu, 0 Xeo o X0 )

In general, this is a Borel measurable function of X,--- X, . In
many cases an exact expression for this quantity is difficult to
obtain. Often we do not have the necessary statistical information
10 ¢valuate such a quanuty. In such cases, we might restrict the
form of the estimator 10 be lincar and apply well-known tech-
nigues (2] for its determination. Lincar estimation can also be
thought of as applying the projection theorem {i. pp. 150 -155)
and projecting X, , onto the lincar manifold generated by the
obscervations X\.-- - X. Clearly, in this case the only statistical
information required is the second-moment characteristics of the
random process.

In an attempt to improve estimation performance, we propose
to modify or augment this subspace 0 a> 10 huve a larger signal
component present within the subspace. A lincar method cannot
alter the subspace in the manner reguired to achieve the desired
behavior; however, a nonlinear system can modify the subspace
So, we begin by restricting our estimate X, , , to be of a form that
1s cxpressible as the output of a system consisting of a time-in-
variant zero-memory nonlinearity (ZNL) followed by a lincar
filter. The ZNL is charactenized by a Borel measurabie function
€(-) such that g( X)), - ¢( X,) arc second-order random vari-
ables. We can now form our estimate of N, .| as a
lincar combination of the g(X,) by projecting \ ., onto the
lincar manifold genesated by the modificd  observations
gt X)) gl X ) I the weighting sequence of the lincar filter iy
given by A, - - hy . then the estimate is given by

N
".'\'l = Ex(xn)h\ " (‘)
n 1

We wish to determine a function g(-) and a sct of coefficients
hoo - oohy >0 that the resulting mean-squared crror is mini-
mized and s at least as good as that of the optimal lincar filter.
Similar system structures have been employed in certan detee-
tion applications [3].

We note that the purpose of the hincar filter is sunply to
implement the projection operation. The purpose of the ZNL iy
to modify the observations in such a way that the resulting lincar
mamfold contains a large component of X, , . so that the error
associated with the projection is small. We note that in working
with a nonlincar system of this type, no statistical knowledge of
the random process bhevond that contained in the family of
hivarigie distributions '~ ever required. In some cases even loss
statistical knowledge suffices. For example, if the ZNL is chosen
to be a polynomial, then the required statistical knowtedge of the
random procesy reduces to the family of certain joint hugher order
moments of the random process.

Since we know only the second-moment characteristics of the
random process, the widest class of systems over which we could
optimize 1s the class of linear systems. Thus, to do betier than s
posuible using hinear prediction, we must have more satistical
knowledge of the random process than its second-moment char-
acternnes. Therefore, since the ZNL serves the purpose of mod-
ifying the closed lincar manifold onto which Xy | s projected,
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and since the resulting prediction scheme never requires statst
cal knowledge of the random process bevond that contained
the family of bivariate distributions, a nonlinear predictor of this
type seems reasonable.

In Scction 11 we consider some cases where the optimal oso-
mate has the form of (1). In the general case. the optimal
predictor will not have the form of (1), and thus a4 predictor o
this form will be suboptimal. This sitwation 1s discussed m
Secuion 111, where an iterative scheme ss presented (op deternnn
ing subopumal predictors. In Section IV examples are gnen 1o
lustrate the method. Finally, in Section V 4 nomiterative ap-
prouach utihizing a modified ZNL structure is considered

{f. CPTIMAL PREDICIION

In this section we consider some cases where the opumal hilter
has the form of (1). Whenever the optimal filter is hncar. then 1
obviously has the form of (1) with g(v) = v. The class of
spherically invariant random processes (4] admits lincar solutions,
with the most well-known examples being the Gaussian processes

[t iy clear that the performance of the filter given by (1) can
always be made at least as good as that of the optinal bncar
filtler. In some cases the filter given by (1) can be optimal while
the optimal lincar filier is uscless. For example, ket A, 740
where U is a random variable uniformly distnbuted over | 11
and P,(-) iy the nth Legendre polynomial {5]. In this case. the
sequence (X 0= 12,0+ -} is a sequence of uncorrclated zero-
mean random vanables, and the opumal hacar Hilter viclds an
estimate which is zero. However, for g(ay = Py (V) and

- th

ho={

the filter of (1) gives the estimate X, ., = X,., Numcrous
examples similar to this ¢an casily be constructed.

When the process is a (finst-order) Markov process, it is well-
known [}, pp. 8)-83)that E{ Xy, () Xy, - X)) = ELN, 0V
with probability one (wp1). Thus a system of the form of (1) with
a ZNL given by g(x) = E{(X,,,{ X\ = x} and a wcighung
sequence given by

n=N |
n=N -1,

~J. a0
""‘{o, n e

will yield the optimal estimate of X,

Markov PrOCENSES sETVE s mod«.ls fur many physical phenom-
cny that arise in practice. Often they are obtaiaed as the sodution
of fiest-order stochastic difference equations of the form

Noov 28X+ 7,0 a0 0012

wo

where g(-) s a Borel measurable function and the sequencd | /7,

v a sequence of zero-mean independent random vaniables that

are independent of the imtial condition X, Ty casily seen that

in this case we will have E{N (P8 LX) wtd o wpl
Clearly. for any random process for which

\

Sev)hy o owplo ()

n |

ELX A A ) -
a system of the form of (1) will produce the optimal estmate of
Ny Asanother example of a process for which the condinonal
cxpectation has the form of (2). consider the process genctated by
the following second-order stochastic difference cquation

“'u‘.‘ "’u.‘s’('\’n- I) 4 hlg( x..) t /n- '
n Lot o (y

where g1 1s a Borel measurable function and [/} s a sequenee
ol rero-mean independent random vanables independent of i
mitial conditions X and N T can be casidv seen that tor thas
cexample, foran vV - 2,

EAVG X N = hae(N) s gl Ny ) wpl

-’
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Exiension of this example 10 the case where (3) is a Ath order
stochastic difference cquation is obvious.

III. SUBOPTIMAL PREDICTION

In the general case there will not exist a function ¢(-) und 4
weighling sequence hy,. - - by | such that (2) is satisfied. How-
ever, 1L is quite reasonable to conjecture that in many cases it may
be possible to determine a filter having the form of (1) with a
mean-squared crror cither significantly smaller than that associ-
ated with the optimal linear filter or very close to the mean-
squared error associated with the optimal filter.

I the function g(-) that minimizes the mean-squared crror is
known, the g( X,) will be well-defined random variables and the
determination of the &, that minimize the mean-squared error
reduces to an apphcation of the projection theorem that s,
seting

E{
(4)

and solving for the A, To carry out this step we need to caleutate
the werms E{g(X,)g(N)} and L{ X, g( X)) In practice, the
determination of the function g(-) that minimizes the mean-
squared crror is a difficult problem.

Notice that, in the optimization problem where the filter s
constrained to be of the form in (1), only sccond-order informa-
tion (i.c.. the family of bivariate distributions) is required. This is
more statistical information than would be required il we were
doing optimal lincur filtering, which requires only second-mo-
ment information. However, it is still considerably less statistical
information than would be required if we were doing oplimal
fillening, which requires statistical information pertaining to an
(N + Dh)-dimensional distribution,

In order to circumvent the difficult problem of determining the
funcion g(-) 10 use i (1), we will sacrifice some degree of
optimality and parameterize g(-), thus letting the determination
of g() simply depend upon finding the correct parameters,
Doing s0, we then wnite the resulting mean-squared crror as
function of the parameters associated with g(-) and the weighting
sequence of the lincar filter. In this case, the mean-squared error
would be a function of K + N parameters, where K is the number
of parameters associated with g(-). For example, It g( ) be given
by

N
Xooy - Ehs .8(X,)

n |

g(x,)} 20, 4 LN,

A
g(x) = 2 a,b(x).
1

I

hen our estimate s given by

N A
Xoo0 2 Zhy ab(X,).
a bty

and the resulting mean-squared error is given by

llx, %00))

N A
FNGE) 23 Shy k[N, b(N,))
n 1y

t4-
14

A A
T S hy by aa E(B(N)B(X,))
]

o L Ly LA

(5)

The functions b (o) should be determimed so that there s
constderable flexthility in the functional form of g ) and also so
that the expectations in (5) could be determined from the statisy-
cal information at hand. For ¢xample. if A(v) v, then the

necessary statisuical information would consist of the higher order
Joint moments.

The aext step might be 10 minimize (5) over the A - A
paramcicrs. This would result in N + K equations of third-order
polynomials in the parameters. This simultancous optimization
over all the parameters presents potential numerical problems. As
an alternative to the simultancous optimization over all the
parameters, we describe an iterative technique.

The basic plan of the iterative technique is to consider the wo
sets of parameters separately and to iteratively optimize over one
set of parameters while holding the other set fixed. This iterative
wehnigque results in the aced to solve systems of linear equations,
as opposed to the need 1o solve systems of equations in third-order
polynomials such as encountcred in the effort 1o simultancously
optimize over all the parametcrs.

We will assume that the parametric form of g(-) is such that
with the proper choice of parameters we could have g(a) =« In
this way the mean-squared error that results will always be upper
bounded by the mean-squared error associated with the opuimal
lincar filter.

The iterative technique is as follows.

Step I Determine the optimal weighting scquence 4
h , for the case where g(x) = .

Step 2: For this choice of k- .k, ,, determine a,,- .4
0 as to minimize the mean-squared error.

Step 3: For this choice of 4, - -,a, . determine the optimal
weighting sequence h,,- - - by .

Step 4: Repeat Sieps 2 and 3 until the improvement in the
mean-squared error is negligible.

e .

A

At cach stage of execution the algorithm provides a system design
whose mean-square estimation crror is no larger than that for the
previous step of the algorithm.

The a,, - -.uy and hy,--- h, ., that are obtained in Step 4
after the termination of the iterations determined the system,
Step 1 and Step 3 make use of the projection theorem and result
in E(Xy, (X)) = 3Y hy SE(B(XB(X)). J = 1N
Step 2 makes use of (5) and results in

N N
2 2"\ nh.\' 1

n-11
K
24, E{b(X)b (X))} + 2 a  E{b(X,)bp(X,)}
hel
v
223 hy JE(Xe b)) =000k
n

IV. Exameins

In this scction we consider a particular parametric form for the
ZNL and a specific model for the random sequence. The iterative
method described carlier is used in this case to determine a filter
of the form of (1). We also determine the mean-squared crror
resulting from usc of the optimal filter and that resulting from
use of the optimal lincar filter. Performance results for these
filters arc compared, and it is seen that in several instances the
improvement in mean-squared crror of the suboptimal filter over
that of the optimal lincar filter is a significant iraction of the
corresponding improvement of the optimal filter over that of the
optimal lincar filter.

Assume that we have knowledge of the regression function for
stationary { X, }:

r(x) = E(Xy, | Xy = x}. (6)
Notice that if we choose g(x) = r(x) and
_f1n =0
h"—{O, n*0,

]
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then the estimate would be the same as that of the optimal filter
based on the most recent observation. II we were to use the
projection theorem to choose a different weighting sequence
{#,,}. we might do beuter. It seems reasonable to expect that if we
wure 10 parameterize g(+) so that by proper choice of the parame-
ters we would have g(x) = r(x). and then to use this parameteri-
zation of the ZNL 1n the iterative technique described carlicr, we
nught determine a system of the form of (1) exhibiting very good
performance. This i1s how we will choose the ZNL in this section.

As a4 model for the random sequence (X,. n = 1.2,-.-} we
assume that

X, =(z,)"" (7)

where {Z,. n=1,2,---} is a zero-mean stationary Gaussian
process with unit variance and autocorrelation function p(-).
First we derive an expression for the regression function (6) when
the random sequence is given by (7). Using resulls in [6], we have
that

E{X, 1 X}

i

E((zy, )" 2,)
2 lp(l)]"bnan(z\)
n=0

i

1}

2 [p(M]"58,((x,) "),
n=0

where the series are mean-square convergent. the constants (b, )
are given hy

b, - -—-j (x) ‘0(\)pr( ,dl. (8)

and 4,15 the nth normalized Hermite polynomial given by

8,(x) = g‘/,';l—-_)—"exp( 3 \):",, cxp( :': )

We see from (8) that b, = 0 for n > 2¢ + | and. in fact, the b,
cun be obtwned from the relation

2¢ ¢+ 1

.qvl 2

! we have

3, n=1

h - /3. n=13

0, n=}3

(] ,,(X)

For example, for ¢ -

and r(x) is given by r(x) = {p(Dx + 3p() (1 - [p(h}H)='
Forg =2,

15, n=1
IO,/?)‘ n=3
b, - _
lz/so. n=s$
0, n#1,3.58,
and
r )y 10T = [pF)at

+15()(1  [p(D) )' SR

fnccencral, for an arbiteary positive integer ¢, 11 1s castly seen that
7t has the form

t2q Nrtlgt Lty
) N ('.,(,\) . '

te, WA )""'

by

! "l(\)

where the ¢, are constants that can be determined using the abowve
procedure. Thus we choose the ZNL g(-) to be

q+ \
— A2 /2t
g(.\’)— 2“:(“) .
=1\
where the parameters a, are to be determined by the ierative
procedure. In utilizing the iterative proceduse we encounter the
nced for the knowledge of moments and joint moments of {7, )
(see [7)). which are given by

E((Z")P}:{é.-S-S...(p—l) :,::Z:;:n
E(Z)(Z..)')
=plr,s.i)

(r+ts=Dp(idu(r=ts~ 1)+ (r—1)}s - 1)
(1 ——[p(i)]z)p(r—2.s~2.i). for (r + 5) even
0, for(r+s)odd.

]

0]

Observing that (1, 1,i) = p(i) and u(2.2, i) = 1 + 2p(1)]°. all
higher order joint moments can be calculated using (9).

In order 10 compare the performance of the suboptimal estima-
tor with that of the optimal estimator, we have obtained expres-
sions for the mean-squared error associated with the optimal
estimator. For the optimal system we are interested in

E((Zyo ) "1 20

Notice that this is the (2¢ + 1) conditional moment, and the
conditionat distribution has the functional form of a Gaussian
distribution. Thus the minimum mean-squared error follows using
standard properties of the Gaussian distribution (see, for exam-
ple. [R]). For ¢ = 1 we find that the minimum mean-squared error
is of the form 15 — PHIE(Y?) + 6P E(Y*) + PIE(Y*}]: and
for ¢ =2, the mnmmum mean-squared error is of the form
945 ~ PP[225 E(Y?) + 300P,E(Y*) + 130P2E(Y®) +
20PE(Y*) + PLE(Y')]. In these expressions P, is a constant,
and Y is a normal random variable with zero mean and variance
y2. The constants P, and y? are defined as follows. Assume
without loss of generality that the correlation matrix R assoviated
with Z,,---.Z, | is positive definite (if it is not, the data can be
reduced to achieve this result). Then P, is the reciprocal of the
clement in the lower right comer of R™'. Denote the finst N

A

clements in the last row of R™' as r\,- - -,ry. Then
N-t m
':2(') +2 2 v’w wotfu - we 1PN = m).
m=1 =1

The mean-squared error associated with the optimal lincar filter
can now be obtained in a straightforward fashion

In Tables 1- VI results are presented comparing the subopu-
mal filter 1o the optimal filter and the optimal lincar filier.
Scveral correlation sequences for (2} are considered, both the
third power and the fifth power of Z, are used as models, and
examples for two observations and five observations are given In
these tables /., L. and L., are the mcan-squared efrors resulting
from the optimal linear filter, suboptimal filter using a ZNL, and
the optimal filter, respectively. The quantity n, is the pereent of
decrcase 1in L) when the suboptimal filter using a ZNL 15 em-
ployed, ic, ny = 10, = L)/L,. The quantity n, s the per-
cent of posible improvement in 1, using the optimal filter, 10,
ne A, =0 /L0 The quantity ny 1 the normalized
pereent of improvement over the linear filier given by the subop-
amal filter usng a4 ZNL, e, ny 2 1004, /0, T,
" )//( "I I'nun )
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CORFHCIENTS u, OF NONLINEARITY g(X) = ayx + @ AND i, OF
SUBOPTIMAL SYSTEM FOR ¢ = |

"y i) "2 "y " a 2
1 8113 L0027 008 .00%9 .009¢ 1,919 L6811
¢ 1899 .0084 .0064 .0051 L0132 674 .862
s 4020 093 0049 .0029 0024 2,788 AN
. R 75Ys 0087 0433 L0207 .028 2.6769 K310
" a2t L0407 L0164 .0076 0067 3.9709 L2054
': e -.00% -.017% -.0111 -.0682 1,200 7048
’ YSTS -.02% -.01% -.0 -.001% 2,175 6375
L L3509 -.0267 -.0121 -.0032 -.0017 3.2 L821y

As mentioned carlier, the functions hl( - should be determined
that considerable flexibility exists in the funcuional form of
) For example, if Xy ., bas a nonzero mean, then choosing

w of the A () to be constunt would enable the mean to be

Mhiracted out and thus decrease the mean-squared crror. In this

.«e. for example, Step | of the algorithm should be replaced

.th the following: determine the optimal weighting sequence
. < hy  for the case where g(x) = x + 1. In thiy case, Step

will result in the best affine filter (i.e., lincar plus a constant), as

posed to the best linear filier.

As we also mentioned earlicr, the functions b (-) should be

:.osen such that the expectations in (5) could be determined
un the statistical information at hand. To once again test this

cthod of nonlinear prediction, we simulated the following Jif-

rence cquation driven by white noise and empirically estimated
¢ necessary expectations from the simulated quantitics:

X,., = -1.74X} + 0.005L,.,.

nere the sequence {U,) is a sequence of independent random
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TABLE | TABLE V
CORRELATION SEQUENCES CORRESPONDING TO TabLrs 11-V CORFFICIENTS ¢, OF ZNL g{x) = ayv + ayv? ™t v an ! *
AND /i, OF SUBOPTIMAL SYSTEMEOR ¢ = 2
{ o0 F194] Fis )] 2l8) o(5)
v | s 578 45 35885 .29 "o ™ "2 i) " 4 ’ )
§ -::’ ;?:' ':2;“ ':"2“ ';’?:! Y [.e779 0119 .0083 0042 0052  4.0527  3.7727  .49%
ol s *59s ‘319 asas 23023 2 |.7065  .0097  .0067  .005 0098 136 2.0%2 L7585
s | w25 a1 1eers (0968 .08207 3 |.2565  L00s9  .0028 L0007 .00t  15.173  4.5019  .196
'”“ '““ 's '”” “m ) L2408 0472 .0282 019 017 11,733 4.485 1966
1 . . . . s | .62 0227 .009 L0063 0026  23.858 3.802 0839
r | rar L2983 128 087 00463 o . - _
3 | .e022 1975 0625 o123 00077 -6536  -.03¢ 023 -,0136  -.02 2,762 29562  .6302
. . . . . 7 |.2866 -.0186 -.0096 -.005¢  .0002  16.7841  4.5789 2267
8 |.2032 -.0139 -.0085 .0019  .0008  22.373 4.2665 128
TABLEIL TABLE VI
: AND PERCENTAGES OF IMPROVEMENT FOR . A
MEAN-SQUARED ERRORS : I CORRELATION SEQUENCES CORRESPONDING TO Tasi s VI, VIII
- L ]
’ o1 old)
N R N o " a e
| 1 -"n 1 2 3 1 9 7
' 9.1983 3.8814 a.8581 3.6 3.9 97,3 2| .8 .5
2 5.1744 5.0622 $.0599 2.6 2,21 97.6 s | .8 .3
s r2.5987 12.108¢ 12,108 3.89  3.89 9.8 P S K
o | 12.3198 119216 11,8952 3,23 S, 937
s | 13.0849 13,2957 15,293 2.8 2.8 9.1
] 8.9247 6.6228 6,4926 4.3 6.2% 69.8
14 12.29203 1,732 11,7259 6.5 4,59 98.8
8 ] 13,8219 12,8042 12,8123 381 1.82 v9.6 . . TABLE VII .
COFFFICIENTS ¢, OF ZNL g(x) = a X + ay¢' 2 AND /i, OF
SUBOPIIMAL SYSTEM FOR ¢ = |
TABLE 111 "o " ‘1 2
MEAN-SQUARED ERRORS AND PERCENTAGES OF IMPROVEMLNT FOR ) 12377 -.690% 9333 82083
g=2 2 8837 -.300 1.6639 6923
s |09 -.6467 2.3987 L4089
. 1921 -4l 3.2982 4545
l Y L Lein ba! "2 3
v} r2re2 706,58 706,22 303 318 980
2 493,78 64,78 &6h .49 1.98 2.04 9.7
3 | 887.49  859.95  8%9.9 3.1 3.1 w.7 TABLE VIl
6 | arv.en 95659 81,88 2,82 313 898 MUAN-SQUARED ERRORS AND PERCENTAGES OF IMPROVEMINT HOR
s | 920,985 8997 99,63 2.3 2.33 8.5 =
6 | 58457  556.58  550.99 341 5.7 59.3 4
7 $76.38 8:5.086 865.26 .47 3,56 9.7
8| Mise 8862 %862 2.8 2.9 W2 Y L Lain b " K
D X AN 3.1354 829 143 41.4S
B 2 | .58 7.027%  6.7406 212 10,9 es.%2
3 | s.780¢ 370 1.0231 6.3 82.3  29.82
TABLE IV 4 | 8.9825  7.1689  4.967¢  20.19 467 45.18

variables uniformly distributed on {—1/2,1/2]. Letting g(x) -
co t €+ cax3, we see that it is possible to realize the best
predictor with a nonlincar system of the form under considera-
tion. We took N = 2 and cmpirically estimated the expectations
oceurring in (5). After one iteration of the algorithm, the empiri-
cally estimated mean-squared error was reduced from 0.085 to
0.00031.

V. AN ALIERNATE DESIGN APPROACH

In the preceding, we considered an iterative procedure for the
dosign of the nonlincar predictor. In this section we will consider
a genralization of that concept which results in a noniterative
procedure. Recall that the purpose of the ZNL was 1o modify the
lincar manifold onto which Xy, | is projected. The purpose of the
lincar filter was simply to implement the projection onto the
lincar manifold gencrated by g( X)), - -.g( X ). 1f the ZNL were
allowed change, then the possibility exists of choosing the ZNL
such that a larger component of X, ,, lies within the lincar
manifold spanned by its output.

In the earlicr case with a single ZNL we have sacrificed some
degree of optimality by parameterizing the ZNL and then letting
the determination of g(:) depend upon finding the coreect
paramcters. In this situation, the mean-squared crror was a
function of N + K parametcrs. If we now allow for ¥ such ZNL's
in the system, then the mean-squared error will be a function of
NUK + 1) parameters. 1t may appear at Tirst glance that we have
now madc the problem much more complex, due to the introduc-
tion of morc parameters, Hoever, as we shall sce shortly, this
alternative approach will result in a noniterative design proce-
dure.
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With ¥ ZNL" the estumate s given by
N
Xy = 2 g2 X )h, .,
n- 1
where N ZNL's are given by
A
¢ (x)= 2 a,h(v)
;)

In s case, f we let d,, = a,,h, 4, then the ZNL g,(¢) could
he replaced by

K
gy = ¥ a,,b(x).
5l

and the linear filter could be replaced by an accumulator, and the
mean-squared error will be a function of AKX parameters. In the
sequel we will take this approach. Thus our estimate is now of the
form

) N A
'\‘\ V 2 2 an;hl( Xu)' (lo)
a 1, 1

and we wish to deternune the parameters {g,,,}. The minimum
mean-squared error estimate of this form is given by projecting
A, ., onto the hincar manifold generated by the NK random
sartables {h(X,)} Thus the paramcters {a,,} arc given as a
solution to

ny

BA = C. ()

where 4 is a AN-dimensional columa vector of the parameters
{a,,} ordered lexicographically, B is a KN ¥ KN matrix whose
general term s of the form E(b,(X)b( X)) where the lexico-
graphic order of ¢ and ; denote the column and the lexicographic
order of A and m denoles the sow, and C is a KN-dimensional
column vector made up of the terms E{( X, . b (X,)} ordered
lexscographically in 7 and 2. We note that if the parameters {a,, |
are such that (1) 1s satisfied, then the resulting cstimate given by
(H)y 1» the minimum mean-squared ¢rror ostimate, and by the
projection theorem it is uniquely defined up 1o probability-one
cquivalence. That s, more than one solution o (1) may cxist,
however, for any number of solutions to (1), the resulling
estimates are all equal with probability one. Alwo, the projection
theorem guaraniees that at least one solution to (1) exists

As a specific example, we might choose b(v) - ' ' In this
Case. the matrix B will consist of various moments and cros.
manients of the set of raadom variables.

To compare the two methods, we simulated the following
difference cquation:

X 0KT + 1.74X7 + 013X, |+ 0050, .

where the U, were independent random variables uniformly dis-
inbuted over [~ 1,2.1/2) Weset N =2, K 3. and h(v) -

v ' The necessary moments and cross moments were Cpiri-

cally estimated from the simulated quantitics. The iteration pro-
vedure using a single ZNL yielded an estimate given by

X, 0903677g( X.) + 0.003506¢( X, ),
where
glv) 1 +0.097418x 1. 85636407

The nonsierative procedure using N ZNL's viclded an estimate
~aen by

\, O RIRKI0 ¢ D U46003 X+ 1.7420%6 N7
+0.132142%, 0080110 X},

If the actual moments and cross moments had been used in the
noniterative procedure, then for this example the exact inimmum
mean-squared error estimate, given by

X, = —087+ 174X} + 0.13X,.

would have resulted. The resulting mean-squared crrors were
empirically estimated from the simulated quantities and are given
by 0.003503 and 0.000205 for the iterative and nonitcrative
procedures, respectively. The actual minimum mean-squared er-
ror for this problem is 2.5 /12000 = 0.0002083.

VI. SUMMARY

We investigated the design of nonlinear discrete-time predic-
tion filters. We motivated our approach through the concept of
modifying or augmenting the subspace generated by the observa-
tions in such a way so as 1o have a larger signal component
present within this augmented subspace. The form of the system
under study was that of a zero-memory nonlinearity followed by
a lincar time-invariant filter (ZNL-LTI). We have shown that in
many cases, where the optimum nonlinearity is known, the ZNL-
LTI structure produces nearly optimum results. Finally, an exten-
sion to the use of several ZNL’s was considered.
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The Design of Two-Dimensional Quantizers
using Prequantization

KERRY D. RINES, MEMBER, 1EEE, AND NEAL C. GALLAGHER, JR., MEMBER, IEEE

Abstruct—The theoretical advaniages of two-dimemsional quantization
over univariate quantization have been studied in the literature. However,
in many cases there is no known implementation for the two-dimensional
qusntizer thal can opefate in real time. A new approach to the design of
two-dimemional quantizers is presented. This technique, called prequanti
sation, is used to design two-dimensional quantizers that operate in resl
time. The importance of prequantization is demonstrated by the design of
the optimum uniform two-dimensional (hexagonal) quantizer. Additional
examples are given 1o illustrate the flexibility of this design approach.

1. INTRODUCTION

HE USE OF two-dimensional quantizers for encoding

analog sources has been of increasing interest in recent
years, Two-dimensional quantizers can offer advantages in
the design of both optimum and suboptimum quantizers,
These advantages may be offset by the difficulty in imple-
menting many two-dimensional quantizers. In this paper
we present a new approach to the design of two-dimen-
sional quantizers called prequantization. We show that for
a number of examples prequantization simplifies the
guantizer implementation and/or improves the quantizer
performance.

Manuscnipt received Feb. 19, 1980; revised March 12, 1981. This work
was supported by the Air Force Office of Scientific Rescarch under Gram
AFOSR T4-3605

K. D Rines was with the School of Electrical Engineering, Purdue
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Corporation, McLean Operation, 8301 Greensboro Drive, Suite 1200,
Mcul.can, VA, 22102,

N. C. Gallagher, Jr., is with the School of Elecincal Engineering,
Purdue University, West Lafayette, IN 47907,

The design of two-dimensional quantizers for optimum
guantization is one area of interest. Consider the random
sequence x,, X, Xy, +++ where the x, are all independent
and identically distributed. The traditional approach to
quantizing this sequence is to perform the quantization one
sample at a time using a one-dimensional quantizer. Much
of the early work in quantization theory has addressed this
problem. As a result the design and implementation of
optimum one-dimensional quantizers is straightforward. In
addition these quantizers are often able to operate at high
source rates. These properties make one-dimensional quan-
tization an attractive choice for quantizing the above se-
quence. The advantage of quantizing the independent iden-
tically distributed (i.i.d.) sequence in two or more dimen-
sions is discussed by Zador [1]). Simply stated, these results
indicate that the minimum obtainable per sample distor-
tion decreases as the quantizer dimension is increased.
Therefore, the potential exists to improve the performance
of digital encoders by replacing one-dimensional yuan-
tizers with two-dimensional quantizers.

Zador's results include derivations of both the upper and
lower bounds on the distortion obtained when using an
optimum quantizer. Unfortunately, these results do not
provide insight into the structure of the quantizer. The
design and implementation of optimum two-dimensional
quantizers remains a largely unsolved problem. Recently
the design of two-dimensional Quantizers has been ad-
dressed. Computer algorithms (or designing optimum
quantizers of two or more dimensions have been presented

0018-9448 /82 /0300-0232$00.75 ©1982 IEEE
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by many authors, such as Linde ef al. {2]. The algorithms
specify the optimum set of output vectors for the quantizer.
The optimum quantizer can then be implemented using a
search procedure. Having specified the output set, the
search is used to choose the output vector that is the
smallest distance from the input vector. However, this
implementation of the optimum quantizer may be difficult
or impossible to operate at high bit rates. Thus we are left
with the following dilemma. We can use a one-dimensional
quantizer that is easy to implement and suffer a high level
of distortion or we can improve the distortion by using a
two-dimensional quantizer and accept the difficulties in the
implementation. To date the easy implementation of one-
dimensional quantizers has outweighted the theoretical ad-
vantages of using two-dimensional quantizers.

In Section III we consider the design of the optimum
uniform two-dimenstonal quantizer. Gersho {3] has stated
tha. the optimum uniform two-dimensional quantizer is the
hexagonal quantizer. Using prequantization we construct a
simple design for the hexagonal quantizer which can oper-
ate in real time. For our purposes we say that a quantizer
can operate in real time if the quantizer can operate at
approximately the same source rates as a one-dimensional
quantizer. Thus the prequantization design of the hexago-
nal quantizer allows us to take advantage of the perfor-
mance improvements available with two-dimensional
quantizers while maintaining the easy implementation
characteristic of one-dimensional quantizers. This hexago-
nal quantizer design is a significant result and demon-
strates the potential practical applications of prequantiza-
tion.

The design of suboptimum two-dimensional quantizers
has also been studied in the literature. This interest has
been motivated by the numerous examples in which the
data are physically generated in groups of two. These
studies note the difficulty in designing optimum quantizers
and explore the advantages of using suboptimum two-di-
mensional quantizers. One example of data that are gener-
ated in pairs is samples from a complex-valued discrete
Fourier transform. The design of suboptimum two-dimen-
sional quantizers for the discrete Fourier transform (DFT)
has been studied by Pearlman and Gray (4] and Gallagher
(5]

In Sections 1V and V we examine two examples of
subopumum 1wo-dimensional quantizers. The quantizers
are then redesigned using the prequantization approach, In
each case. the addition of prequantization substantially
reduces the mean-squared error performance of the quan-
tizer. These results further emphasize the usefulness of
prequantization.

1. PREQUANTIZATION

The design of two-dimensional qu. .izers using pre-
quantization is illustrated in Fig. 1. The aesign consists of
a nonlinearity called a prequantizer preceding a two-di-
mensional quantizer called an output quantizer. This de-
sign approach is analogous to the implementation of a

PREQUANTIZER ouTRUY
J QUANTLZER

Fig. 1 Two-dimensional quantizer design using prequantization

quantizer using a search procedure. Let the quantizer to be
designed be described by a partitioning of the input space.
where all the input vectors contained within one cell of the
partition are mapped to the same output vector. The first
step in implementing a search is to define the set of
allowable quantizer output vectors. Then for cach input
vector a search is conducted to find the output vector
assigned to that input vector by the partitioning.

Similarly the first step in designing a2 quantizer using
prequantization is to define the set of output vectors. This
is done using a two-dimensional quantizer that is called the
output quantizer. Thus we must determine the set of out-
put vectors specified by the quantizer being designed and
then build a two-dimensional quantizer with that same set
of output vectors. The problem of building the output
quantizer is somewhat simplified in the prequantization
approach since there are no constraints on how the output
quantizer partitions the input space.

The second step in the quantizer design is to require that
for each input vector the proper output vector is assigned.
For the gquantizer being designed, let 4, be an output
vector and S, be the set of all input vectors contained in the
cell of the partition corresponding to A,. Similarly 4, is also
an output vector of the output quantizer, and we let T, be
the set of all input vectors contained in the cell of 1he
partition corresponding to A,. A nonlinearity called a
prequantizer is used to map S, into 7, for all +. Thus the
prequantization design maps §, into A, by first mapping §,
into 7, with the prequantizer and then mapping 7, into A,
using the output quantizer. This prequantization design
procedure is illustrated with a simple example.

Consider the design of the two-dimensional quantizer
shown in Fig. 2. This quantizer has no significance other
than its usefulness in this example. Using the prequantiza-
tion procedure we must first build an output quantizer that
defines the same output set as in Fig. 2. The output
quantizer can be designed very simply using two unmivariate
equai-step-size quantizers. The partitioning of the output
quantizer is shown in Fig. 3. Having defined the output
vector set with the output quantizer, we now turn to the
design of the prequantizer. We observe that each parution
in Fig. 2 can be mapped into the corresponding cell in Fig.
3 by letting v’ = y and x’ = x — A/4. Thus the prequan-
tizer that completes the design of the quantizer in Fig. 2 is
given by

’

Y=y
A
X'=x- = 1
. (n
One advantage of using the prequanuization design ap-
proach is that often the quantizer can operate in real time.
Again we define a real-time quantizer as a quantizer that
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Fig. 2. Partitioning of a two-dimensional quanuzer.
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Fig. 3. Partitioning of output quantizer

can operate at approximately the same source rates as a
one-dimensional quantizer. In a number of examples the
output quantizer can be implemented using a combination
of one-dimensional quantizers and as a result can operate
in real time. It is also useful 1o note that the prequantizer is
defined only as a nonlincar mapping and may or may not
be a quantizer. This differs from the term pre-quantizer
used in the literature which refers to one quantizer preced-
ing another quantizer.

Gersho has argued that for independent samples (at high
bit rates) the optimum uniform two-dimensional quantizer
is the hexagonal quantizer. The design of a hexagonal
quantizer using prequantization is given here. First we
attempt to build a two-dimensional output quantizer that
can be casily implemented and operate in real time. One
quantizer meeting these requirements is a scaled version of
the diamond quantizer given below.

Let the inputs to the two-dimensional output quantizer
be x and y. The variables x and y are first encoded into two
new vanables w and 2z by the linear transformation

HEXAGONAL QUANTIZATION

w=x+f5y

:=x—/§y. ()
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The variables w and z are quantized scparately by uni-
variate quantizers with a uniform step-size A. The outputs
of the output quantizer are then obtained using the lincar
iransformation

(3)

The position of this quantizer in the hexagonal quantizer
design is shown in Fig. 4 and the partitioning of the scaled
diamond quantizer is given in Fig. 5. Having chosen the
output quantizer as defined in (2) and (3), we now turn to
the design of the prequantizer.

The prequantizer must map the hexagonal region corre-
sponding to each output into a scaled diamond region
corresponding to that same output. Consider the hexagonal
partition shown in Fig. 6. Assume x is fixed and the pair
(x, y) is contained within a given hexagonal partition. We
now pose a question: does there exist a value x’ such that
the pair (x', y) is contained within the corresponding
diamond partition for all values of y? This approach is
illustrated with the following example. Let x = x, as shown
in Fig. 6 and let y be in the range —A/2/3 10A/2y3 . In
Fig. 6 we observe that the hexagonal quantizer output will
be (0,6} for all input pairs in the sex {(x,, y): y, <y < y,}.
Similarly in Fig. 5 we observe that the scaled diamond
quantizer output will be (0, 0) for all input pairs in the set
{(x2, ¥): y;, <y < y,). Therefore, if f(x,) = x,, the quan-
tizer in Fig. 4 will behave like the hexagonal quantizer for
all input pairs in the set {(x,, y): ~4/2/3 <y <A4/2/3).
In fact, we can show that the quantizer in Fig. 4 behaves
like the hexagonal quantizer for all inputs in the set
{(x), y): —o0 <y =< o) when f(x,) = x,. Repeating this
example for all possible values of x,. we obtain a prequan-
tizing function that maps the hexagonal region correspond-
ing to cach output into a scaled diamond-shaped region
corresponding to that same output. The resulting prequant-
izer function is given in (4).

A A A A A
ni. n-z--'6—SxSn-5+—6-

f(x)={3x - 2n+ 13, )
A A A A
ni+35x5(n+l)7—z.

IV. PREQUANTIZED SPECTRAL PHaAsE CODING

Spectral phase coding (SPC) is a robust suboptimum
technique for coding a nonstationary or large dynamic
range discrete-time series into digital form. SPC utilizes the
discrete Fourier transform and a two-dimensional quan-
tizer to obtain its robust characteristics. The SPC algo-
rithms are given here, while a detailed explanation of SPC
is available in [6). The input is a discrete-time complex-val-
ued random sequence (a,},%y'. The spectral magnitude A,
and the spectral phase §, of the discrete sequence are given

.v—‘—j
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Fig. 5. Partitioning of <caled diamond quantizer

x
'
Fig. 6. Partitioning of hexagonal quantizer
. below: where
. M- DFT M-\ A
(an}n’—o - [Ap".'}peo . (5) 7’ = COS-‘ "5’:
SPC eacodes the magnitude and phase of the spectrum by 354
: M-
forming the sequence {¥,),-y' given by S = maxd,.
) d’p = 0’ + 7’ 4
: Yemw=8 -7, (6)  where the maximum is taken overp=0.1.--- M- 1 The
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quantized sequence {43,} is transmitted and used at the
receiver to recover the original discrete signal. The recon-
structed discrete sequence is

-~ - M" I

{ }M ID {§(e”'+¢"’"")} . (7)
2 =0

This equation can be rewritten in terms of the quantized
magnitude and phasc componcnts at the receiver

where
1, - .
ép=5(¢'+¢p#ﬂ)
N TP
Y’=E(¢’—¢'¢M)‘ (9)

Examining (6) and (9) we see that the variables 0’ and v,
are quantized by a two-dimensional quantizer called a
diamond quantizer. SPC utilizes the discrete Fourier trans-
form along with the diamond quantizer to code the possi-
bly nonstationary random sequence {a,} into a well-be-
haved uniformly bounded sequence {y,}. In many cases
the sequence (¢, } is uniformly distributed from zero to 2.
As a consequence {y,) is quantized using a uniform step-
size quantizer.

Since SPC is a suboptimum quantizer we ask the ques-
tion: does there exist a prequantizing function that can
improve the SPC performance? The results from [4) and (7]
indicate that for polar quantization (at high bit rates) the
number of magnitude quantization levels N,, and the num-
ber of phase levels N,, must be related by

N, =26N, (10)

for optimum performance. In SPC, y, ranges from zero to
7/2 and 0, ranges {rom zero to 2«. Thus y, has only
one-fourth the effective quantization levels of 0 Ify,is
simply rescaled to range from zero to w, {d,) cannot be
uniquely recovered from the sequence {y, }. However, using
prequantization the quantizer can be redesigned to mini-
mize the mean square error (mse) on v, and improve the
SPC performance.

We begin by defining the quantization errors for y, and
4‘, K

ﬂ’=¢'—¢’,

LIVES WV

(1)

Assume the quantization takes place using an N-level equal
step-size quantizer. Then using a Fourier series expansion,
we can write

wp-tM'

a, = — % §| s-—nl[sin nNy,,
Qn = -%él g#sin nNy,. (12)
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We now define the quantization errors for 6, and v, as

e,= 0, - 0’,
=Y, Y, (13)

Solving for g, and v, in (6) and using this result with (9)
and (11) in (13) we obtain

1
C’ = 5(“ + d’,u).

d,=3(a, = ayou). (14)
Then substituting (12) into (14) and using a trigonometric

identity we can write

2. 8 (-1 .
e, =—= 3 sin nN@, cos nNy,,
14 N"=' n (4 P
& (-1 .
d,= —-1%- %‘ n) cos nN@, sin nNy,. (15)
Thus the mse on y,, is
2 _ (_l)n"'lll
E{dr} IV 2 2
n-lm ]
-E[cos nN6, cos mNG, sin nNy, sin mNy,}. (16)

For a large number of quantization levels N, the mse on v,
becomes

E{d}} ~— —(1 + E{cos2nN6,}). (17)
From (17) we find that E(d’} is minimized for
0-0'=k +2N. (18)
where
k=0,1,--,2N~- 1.

Applying these results, we propose the following coding
scheme called prequantized spectral phase coding (PQSPC).
First obtain 6, and y, as with SPC. The values {4,) arc
then quantwed with output levels ke /N + 5/2N for k=
0,1,:--,2N — 1. The quantizer output (6;} is then used 1o
form the sequence (y,) and the rest of the procedure is
identical to SPC. Flgs 7 and 8 depict the quantization
region shapes for SPC and PQSPC, respectively.

In {7} SPC was compared with the optimum unit vari-
ance Gaussian quantizer (0.G.Q.). We now present a simi-
lar comparison to evaluate the performance of PQSPC.
The normalized mse performances of the optimum unit
variance Gaussian quantizer, SPC and PQSPC are com-
pared in Figs. 9 and 10. All the quantizers have 32 levels (5
bits/sample) and the block size for SPC and PQSPC is 64.
In Fig. 9 the normalized mse of the three quantizers with a
zero-mean Gaussian input is given as a function of the
input variance. The normalized mse of the quantizers with
a zero-mean Laplacian input is given as a function of the
input variance in Fig. 10.
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In terms of normalized mse, PQSPC offers an improve-
ment over SPC of 16.3 percent for the Gaussian input
densities and 16.0 percent for the Laplacian densities. The
improvement for nonsymmetric input densities can be even
more dramatic. In the case of the one side exponential
density PQSPC offers a 47.5 percent reduction in nor-
malized mean-squared error over that of SPC. A desirable
characteristic of SPC is its relative insensitivity 10 a change
in signal power or statistics. Figs. 9 and 10 demonstrate
that PQSPC shares this characteristic. In fact, the nor-

malized mse of PQSPC remains constant for any ch.nge in
the signal variance and changes only 1.4 percent when the
input statistics are changed from Gaussian to Laplacian.

V. HSUEH-SAWCHUK HOLOGRAMS

The wide applicability of prequantization is further 1l-
lustrated by considering an example from computer-gener-
ated holography. In this section we present the results of
using prequantization in Hsueh-Sawchuk computer-gener-
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ated holograms. A detailed analysis of prequantization in
Hsueh-Sawchuk holograms is given in [9] and a good
summary of computer-generated holography is available in
(10).

The Hsueh-Sawchuk hologram encodes the discrete
Fourier transform of the desired holographic image into a
binary pattern. This binary pattern is thea written onto the
hologram using a pattern generator with finite resolution.
The finite resolution of the pattern generator can be mod-
cled as a quantizer. Thus the complex-valued discrete Four-
ier transform of the holographic image is effectively quan-
tized by a two-dimensional quantizer. This quantization
can be improved by using prequantization.

The normalized mean square quantization error for the
Hsueh-Sawchuk hologram in Fig. 11 is 6.82 X 1072, This
compares with a mean square error of 5.25 X 10”2 for the
prequantized Hsueh-Sawchuk hologram. Thus the quanti-
zation error is improved 23 percent by the addition of
prequantization. The improved quantization error can also
be seen by comparing Figs. 11 and 12. The quantization
error can be approximated as a white additive noise which
appears as the high frequency background noise in the
holograms. We see the prequantized hologram in Fig. 12
has less background noise than the hologram in Fig. 11.
Thus the prequantization has reduced the quantization
error without any harmful effects on the holographic image
itself.

Fig. 11. Hsueh-Sawchuk hologram.

IV. Discussion

We have presented a new approach to the design of
two-dimensional quantizers. The usefulness of the pre-
quantization approach has been demonstrated in three
examples. The hexagonal quantizer design is of particular
importance. The prequantization design makes the use of
the hexagonal quantizer with its theoretical advantages
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Fig. 12 Hsuch-Sawchuk hologram with prequantization.

more practical. Existing two-dimensional quantizers were
examined in the two other examples. In each case prequan-
tization reduced the quantization error while retaining the
other important system characteristics.

At this stage the work on the prequantization design
approach is incomplete. Presently there are no guidelines
as to how or when prequantization can be used to design
two-dimensional quantizers. However, the results presented
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here indicate that this approach may deserve some con-
sideration whenever a two-dimensional quantizer is to be
implemented.
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